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Abstract

The popularity of online surveys has increased the prominence of using weights that cap-
ture units’ probabilities of inclusion for claims of representativeness. Yet, much uncertainty
remains regarding how these weights should be employed in analysis of survey experiments:
Should they be used or ignored? If they are used, which estimators are preferred? We offer
practical advice, rooted in the Neyman-Rubin model, for researchers producing and working
with survey experimental data. We examine simple, efficient estimators for analyzing these
data, and give formulae for their biases and variances. We provide simulations that exam-
ine these estimators as well as real examples from experiments administered online through
YouGov. We find that for examining the existence of population treatment effects using high-
quality, broadly representative samples recruited by top online survey firms, sample quantities,
which do not rely on weights, are often sufficient. We found that Sample Average Treatment
Effect (SATE) estimates did not appear to differ substantially from their weighted counter-
parts, and they avoided the substantial loss of statistical power that accompanies weighting.
When precise estimates of Population Average Treatment Effects (PATE) are essential, we an-
alytically show post-stratifying on survey weights and/or covariates highly correlated with the
outcome to be a conservative choice. While we show these substantial gains in simulations,
we find limited evidence of them in practice.
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1 Introduction

Population-based survey experiments have become increasingly common in political science in

recent decades (Gaines, Kuklinski and Quirk, 2007; Mutz, 2011; Sniderman, 2011). However,

practical advice remains limited in the literature and uncertainty persists among scholars regarding

the role of weights that capture differing probabilities of eventual inclusion across units in the

analysis of survey experiments (Franco, Simonovits, Malhotra and Zigerell, Forthcoming). Should

they be used or ignored? If they are to be used, which estimators are to be preferred? As Mutz

(2011, 113-120) notes,

“there has been no systematic treatment of this topic to date, and some scholars have

used weights while others have not ... the practice of weighting was developed as a

survey research tool—that is, for use in observational settings. The use of experimen-

tal methodology with representative samples is not yet sufficiently common for the

analogous issue to have been explored in the statistical literature.”

We seek to fill this void with a systematic treatment, based on sound statistical principals rooted in

the Neyman-Rubin model, yielding practical advice for scholars seeking to make the best possible

decisions when using (or electing not to use) weights in their analysis of survey experiments. We

explore the topic through a combination of formulae, simulation, and examination of real data.

Taken together, these explorations lead to the conclusion that, for scholars examining popula-

tion treatment effects using the high-quality, broadly representative samples recruited and delivered

by top online survey firms, sample quantities, which do not rely on weights, are often sufficient.

Sample Average Treatment Effect (SATE) estimates tend not to differ substantially from weighted

estimates, and they avoid the statistical power loss that accompanies weighting. When precise esti-

mates of Population Average Treatment Effects (PATE) are essential, we conclude that a “double-

Hàjek” weighted estimator is a very straightforward and reliable option in many cases. We also

analytically show that post-stratifying on survey weights and/or covariates highly correlated with
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the outcome is a conservative choice for precision improvement, because it is unlikely to do harm

and could be quite beneficial in certain circumstances.

The greater prevalence of online surveys has gone hand-in-hand with the boom in survey ex-

periments. Firms such as YouGov (formerly Polimetrix) and Knowledge Networks (now owned

by GfK) provide researchers platforms through which to run experiments. The firms offer repre-

sentative samples generated through extensive panel recruitment efforts and sophisticated sample

matching and weighting procedures. By reducing or eliminating costs, subsidized, grant-based

and collective programs such as Time Sharing Experiments for the Social Sciences (TESS), the

Cooperative Congressional Election Study (CCES), and Cooperative Campaign Analysis Project

(CCAP) have further facilitated researchers’ access to time on high-end online surveys. Other

firms and platforms, such as Survey Sampling International, Google Consumer Surveys (Santoso,

Stein and Stevenson, 2016), and Amazon’s Mechanical Turk (Berinsky, Huber and Lenz, 2012),

offer even less costly access to large and diverse convenience samples on which researchers can

also conduct survey experiments. Researchers using these sometimes generate their own weights

to improve representativeness. However, because we view population inferences with such con-

venience samples as rather tenuous, our primary interest is in methods for analysis of data from

sources, such as YouGov and Knowledge Networks, that actively recruit subjects and provide the

researcher with weights.

Survey experiments are a two-step process where a sample is first obtained from a parent pop-

ulation, and then that sample is randomized into different treatment arms. The sample selection

and treatment assignment processes are generally independent of each other. Sampling procedures

have changed in recent years because of increasing rates of non-response and new technologies.

As a result, weights can vary substantially across units, with some units having only a small proba-

bility of being in the sample. In contrast, the treatment assignment mechanisms are usually simple

and relatively balanced, rendering the SATE straightforward to estimate. Estimating the PATE,

however, is less so because these estimates need to incorporate the weights, which introduces ad-
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ditional variance as well as a host of complexities.

In this work we assume the weights are known, and further assume that they incorporate both

sampling probabilities and nonresponse. In particular, if there is non-response, and the non-

response is correctly modeled as a function of some set of covariates, the overall weight would

then be the product of being included in the sample and of responding conditional on that inclu-

sion. We use weight rather than sampling weight to indicate this more general view. In fact, for our

primary type of data targeted by this work, typically the weights are calculated by the survey firms

to represent the relative chances that a newly arrived recruit would get selected into the survey; as

volunteering is in part self-selection, the non-response is built in to the final weight calculations

automatically. We believe the findings based on these assumptions are nevertheless informative,

but we also discuss the additional complications of weight uncertainty in the body of this paper.

Overall, we encourage researchers choosing between these approaches to first give serious

thought to the types of inferences they will make. Do they simply wish to establish the presence

or absence of an effect in a given population? If so, the SATE may suffice. Or do they hope to

measure the magnitude of an effect that must or may not already be documented? In this case, the

scholar may consider her options for weighted estimators.

In Section 2 we overview general survey methodology. In Section 3 we then formally consider

survey experiments and relate them to the SATE. We formally define the PATE and some estimators

of it in Section 4, where we also discuss weights and uncertainty in weights in more detail, and

we introduce a post-stratification estimator in Section 7. We then investigate the performance of

these estimators through simulation studies in Section 5, and analyze trends and features of real

survey experimental data collected through YouGov in Section 6. We conclude with an extended

discussion, providing some advice and high-level pointers to applied practitioners.
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2 Surveys and Survey Experiments through the Lens of Poten-

tial Outcomes

We formalize surveys and survey experiments in terms of the Neyman-Rubin model of potential

outcomes (Splawa-Neyman, Dabrowska and Speed, 1923/1990). Assume we have a population of

N units indexed as i = 1, . . . N . We take a sample from this population using a sample selection

mechanism, and we then randomly assign treatment in this sample using a treatment assignment

mechanism. Both mechanisms will be formally defined in subsequent sections. Each unit i in the

population has a pair of values, (yi(0), yi(1)), called its potential outcomes. Let yi(1) ∈ R be

unit i’s outcome if it were treated, and yi(0) its outcome if it were not. For each selected unit, we

observe either yi(1) or yi(0) depending on whether we treat it or not. For any unselected unit, we

observe neither.

We make the usual no-interference assumption that implies that treatment assignment for any

particular unit has no impact on the potential outcomes of any other unit. This assumption is

natural in survey experiments. The treatment effect ∆i for unit i is then the difference in potential

outcomes, ∆i ≡ yi(1)− yi(0). These individual treatment effects are deterministic, pre-treatment

quantities.

Let S be our sample of n units. Then the Sample Average Treatment Effect (SATE) is the mean

treatment effect over the sample:

τS =
1

n

∑
i∈S

∆i =
1

n

∑
i∈S

yi(1)− 1

n

∑
i∈S

yi(0). (1)

This is a parameter for the sample at hand, but is random in its own right if we view the sample as

a draw from the larger population. By comparison, a parameter of interest in the population is the
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Population Average Treatment Effect (PATE) defined as

τ =
1

N

N∑
i=1

∆i =
1

N

N∑
i=1

yi(1)− 1

N

N∑
i=1

yi(0).

In general τS 6= τ , and if the sampling scheme is not simple (e.g., some types of units are more

likely to be selected), then potentially E[τS ] 6= τ .

We discuss some results concerning the sample selection mechanism in the next section. After

that, we will combine the sample selection with the treatment assignment process.

2.1 Simple Surveys (No Experiments)

Let Si be a dummy variable indicating selection of unit i into the sample, with Si = 1 if unit i is

in the sample, and 0 if not. Let S be (S1, . . . , SN), the vector of selections. In a slight abuse of

notation, let S also denote the random sample. Thus, for example, i ∈ S would mean unit i was

selected into sample S. Finally let the overall selection probability or sampling probability for unit

i be

πi ≡ P{Si = 1} = E[Si] ,

which is the probability of unit i being included in the sample. The more the πi vary, the more the

sample could be unrepresentative of the population. We assume πi > 0 for all i, meaning every

unit has some chance of being selected into S. The πi depend, among other things, on the desired

size of sample E[n]. We assume the πi are fixed and known and incorporate non-response; we

discuss uncertainty in them in Section 4.2.

Consider the case where we have no treatment and we see yi ≡ yi(0) for any selected unit. Our

task is to estimate the mean of the population, µ = 1
N

∑N
i=1 yi. Estimating the mean of a population

under a sampling framework has a long, rich history. We base our work on two estimators from

that history here.
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Let π̄ = 1
N

∑
πi be the average selection probability in the population and n =

∑
Si be the

realized sample size for sample S, with E[n] = Nπ̄. Then let wi = π̄/πi be the weight. These

weights wi are relative to a baseline of 1, which eases interpretability due to removing dependence

on n. A weight of 1 means the unit stands for itself, a weight of 2 means the unit “counts” as 2

units, a weight of 0.5 means units of this type tend to be over-represented and so this unit counts

as half, and so forth. The total weight of our sample is then

Z ≡
N∑
i=1

π̄

πi
Si =

N∑
i=1

wiSi.

Z is random, but E[Z] = E[n].

The Horvitz-Thompson estimator (Horvitz and Thompson, 1952), an inverse probability weight-

ing estimator, is then

ŷHT =
1

E[n]

N∑
i=1

π̄

πi
Siyi =

1

E[Z]

N∑
i=1

Siwiyi.

Although unbiased, the Horvitz-Thompson estimator is well known to be highly variable. This

variability comes from the weights; if you randomly get too many rare units in the sample, the

inverse of their weights will inflate ŷHT , even if all yi are the same. We are not controlling for the

realized size of the sample. This is reparable by normalizing by the realized weight of the sample

rather than the expected.

This gives the Hàjek estimator, which is the usual weighted average of the selected units, and

which likely reflects the approach used by most scholars:

ŷH =
1

Z

N∑
i=1

wiSiyi

The Hàjek estimator is not unbiased, but it often has smaller MSE than Horvitz-Thompson

(Hàjek, 1958; Särndal, Swensson and Wretman, 2003). The bias, however, will tend to be negligi-

ble, as shown by the following lemma:
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Lemma 2.1. [A variation on Result 6.34 of Cochran (1977)] Under a Poisson selection scheme,

i.e. units sampled independently with individual probability πi, the bias of the Hàjek estimator is

O(1/ E[n]). In particular, the bias can be approximated as

E[ŷH ]− µ =̇ − 1

E[n]

(
1

N

N∑
i=1

(yi − µ)
π̄

πi

)
= − 1

E[n]
Cov[yi, wi] .

See Appendix C for proof. The above shows that, for a fixed population, the bias decreases

rapidly as sample size increases. If we sample with equal probability or if the outcomes are con-

stant, the bias is 0. However, if the covariance between the weights and yi is large, the bias could

potentially be large also. In particular, the covariance will be large if rare units (those with small

πi) systematically tend to be outliers with large yi−µ because, as weights are non-negative inverses

of the πi, their distribution can feature a long right tail that drives the covariance.

3 Survey Experiments and SATE

Survey experiments are surveys with an additional treatment assigned at random to all selected

units. Independent of Si let Ti be a treatment assignment, with Ti = 1 if unit i is treated, 0 other-

wise. The most natural such assignment mechanism for our context is Bernoulli assignment, where

each responding unit i is treated independently with probability p for some p. Another common

mechanism is the classic complete randomization, when a np-sized simple random sample of the

n units is treated. Regardless, we assume randomization is a separate process from selection. In

particular, we assume that randomization does not depend on the weights.

If our interest is in the SATE, then a natural estimator is Neyman’s difference-in-means esti-

mator of

τ̂SATE =
1

n1

n∑
i=1

Tiyi −
1

n− n1

n∑
i=1

(1− Ti)yi, (2)

8



with n1 the (possibly random) number of treated units (see Splawa-Neyman, Dabrowska and

Speed, 1923/1990).

This estimator is essentially unbiased for the SATE (E[τ̂SATE|S] = τS), but unfortunately, the

SATE is not generally the same as the PATE and E[τS ] 6= τ in general. The bias, for fixed n, is

bias(τ̂SATE) = E[τ̂SATE]− τ =
1

N

N∑
i=1

(πi
π̄
− 1
)

∆i

= cov(
πi
π̄
,∆i). (3)

See Appendix C for derivation. As units with higher πi will be more likely to be selected into

S, the estimator will be biased toward the treatment effect of these units. Equation 3 shows an

important fact: if the treatment impacts are not correlated with the weights, then there will be no

bias. In particular, if the selection probabilities are all the same, or there is no treatment effect

heterogeneity, then the bias of τ̂SATE for estimating the PATE will be 0.

The variance of τ̂SATE , conditional on the sample S, is well known, but we include it here as

we use it extensively.

Theorem 3.1. Let sample S be randomly assigned to treatment and control with E[Ti] = p for

all i with either a complete randomization or Bernoulli assignment mechanism. The unadjusted

simple-difference estimator τ̂SATE is unbiased1 for the SATE, i.e. E[τ̂SATE|S] = τS . Its variance

is

Var[τ̂SATE|S] =
1

n

[
(β1 + 1)σ2

S(1) + (β0 + 1)σ2
S(0) + 2γS

]
(4)

=
1

n

[
β1σ

2
S(1) + β0σ

2
S(0)− σ2

S(∆)
]

(5)

1Nearly unbiased, that is. Under randomizations where the estimator could be undefined (e.g., there is a chance of
all units getting assigned to treatment, such as with Bernoulli assignment where n1 is random and P{n1 = 0} > 0 or
P{n0 = 0} > 0), this unbiasedness is conditional on the event of the estimator being defined. Because this probability
is generally exponentially small the bias is as well, however. See Miratrix, Sekhon and Yu (2013) for further discussion.
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where σ2
S(z) and σ2

S(∆) are the variances of the individual potential outcomes and treatment

effects for the sample, and β` = E[n/n`] are the expectations (across randomizations) of the

inverses of the proportion of units in the two treatment arms.

If n1 is fixed, such as with a completely randomized experiment, then β1 = 1/p, β0 = 1/(1−p)

and the above simplifies to Neyman’s result of

Var[τ̂SATE|S] =
1

n

[
1

p
σ2
S(1) +

1

1− p
σ2
S(0)− σ2

S(∆)

]

For Bernoulli assignment, the β` are complicated because of the expectation of the random

denominator, and there are mild technical issues because the estimator is undefined when, for

example, n1 = 0. One approach is to use n/ E [n1] = 1/p as an approximation for β1. This

approximation is quite good; the bias is of high order for the same reasons as the bias for the

Hàjek estimator (see Lemma 2.1). Furthermore, the undefined issue is of small concern as the

chance of n1 = 0 is exponentially small; giving the estimator an arbitrary value (e.g., 0) if this rare

event occurs, introduces only a small bias. An alternate approach is to condition on the number

of units treated: set p = n1/n and use Neyman’s results. Conditioning is a reasonable choice that

we prefer. It leads to a more accurate (and more readable) formula. For details, including formal

definitions and the derivations, see Miratrix, Sekhon and Yu (2013).

It is important to underscore that any SATE analysis on the sample, given a truly modeled

treatment assignment mechanism, is valid. I.e., such an analysis is estimating a true treatment

effect parameter, the SATE. If E[τS ] = τ then any SATE analysis will be correct for PATE as well

(although estimates of uncertainty may be too low if they do not account for variability in τS). In

particular, if there is a constant treatment effect, then τS = τ for any sample, and the SATE will

be the PATE, and all uncertainty estimates for the SATE will be the same as for the PATE.2 But a
2The estimated uncertainty will, however, depend on the sample S. For example, if S happens to have widely

varying units, τ̂SATE will have high variance and the sample-dependent SATE SE estimate should generally reflect
that by being large to give correct coverage for τS . Now, as this is true for any sample, the overall process will have
correct coverage.
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constant treatment effect is a large assumption.

4 Estimating the PATE

Imagine we had both potential outcomes yi(1), yi(0) for all the sampled i ∈ S. These would

give us exact knowledge of the SATE, and we could also use this information, coupled with the

weights, to estimate the PATE. In particular, with knowledge of the yi(`) we have a sample of

treatment effects:

∆i = yi(1)− yi(0) for i ∈ S.

We can use these ∆i to estimate the PATE, τ , with, for example, a Hàjek estimator:

νS =
1

Z

∑
Si
π̄

πi
∆i =

1

Z

∑
Si
π̄

πi
yi(1)− 1

Z

∑
Si
π̄

πi
yi(0). (6)

This oracle estimator νS is slightly biased, but the bias is small, giving ES [νS ] ≈ τ . If we wanted an

unbiased estimator, we could use a Horvitz-Thompson estimator by replacing Z with E[n] = Nπ̄,

the expected sample size.

Unfortunately, we do not, for a given sample S, observe νS . We can, however, estimate it given

the randomization and partially observed potential outcomes. Estimating the PATE is now implic-

itly a two-step process: estimate the sample dependent νS , which in turn estimates the population

parameter τ . Under this view, we have two concerns. First, we want to accurately estimate νS

using all the tools available to simple randomized experiments such as adjustment methods or, if

we can control the randomization, blocking. Second, we want to focus on a sample parameter νS

that is itself a good estimator of τ . See Appendix A for a more formal treatment of this.
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4.1 Estimating νS

Equation 6 shows that our estimator is the difference in weighted means of our treatment potential

outcomes and our control potential outcomes. This immediately motivates estimating these means

with the units randomized to each arm of our study, as with the following “double-Hàjek” estimator

τ̂hh =
1

Z1

N∑
i=1

SiTi
π̄

πi
yi(1)− 1

Z0

N∑
i=1

Si(1− Ti)
π̄

πi
yi(0) (7)

with

Z1 =
N∑
i=1

SiTi
π̄

πi
and Z0 =

N∑
i=1

Si(1− Ti)
π̄

πi
.

The Z` are the total sample masses in each treatment arm. E[Z1] = pNπ̄ = E[n1], the expected

number of units that will land in treatment (similarly for control).

This estimator is two separate Hàjek estimators, one for the mean treatment outcome and one

for the mean control. Each estimator adjusts for the total mass selected into that condition. This

difference of weighted means is the one naturally seen in the field. It corresponds to the weighted

OLS estimate from regressing the observed outcomes Y obs on the treatment indicators T with

weights wi. This equivalence is shown in Appendix C.

Because this is a Hàjek estimator, there is bias for τ̂hh in the randomization step as well as the

selection step because theZ` depend on the realized randomization. Again, this bias is small, which

means the expected value of our actual estimator, conditional on the sample, is approximately νS ,

our Hàjek “estimator” of the population τ : E[τ̂hh|S] ≈ νS . (For unbiased versions, see Appendix

A.)

We can obtain approximate results for the population variance of τ̂hh if we view the entire

selection-and-assignment process as drawing two samples from a larger population. We ignore

the finite-sample issues of no unit being able to appear in both treatment arms (i.e., we assume a

large population) and use approximate formula based on sampling theory. For a Poisson selection
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scheme and Bernoulli assignment mechanism we then have:

Theorem 4.1. The approximate variance (AV) of τ̂hh is

AV (τ̂hh) ≈
1

p E[n]

1

N

N∑
j=1

wj (yj(1)− µ(1))2 +
1

(1− p) E[n]

1

N

N∑
j=1

wj (yj(0)− µ(0))2 ,

with µ(z) = 1
N

∑N
i=1 yi(z). This formula assumes the πj are small; see Appendix C for a more

exact form. This variance can be estimated by

V̂ (τ̂sd) =
1

Z2
1

N∑
j=1

SiTiw
2
j (yj(1)− µ̂(1))2 +

1

Z2
0

N∑
j=1

Si(1− Ti)w2
j (yj(0)− µ̂(0))2 ,

where µ̂(1) = 1
Z1

∑N
i=1 SiTiwiyi(1) and µ̂(0) = 1

Z0

∑N
i=1 Si(1− Ti)wiyi(0).

See Appendix C for the derivation, which also gives more general formulae that can be adapted

for other selection mechanisms. For related work and similar derivations, see Aronow and Mid-

dleton (2013) and Wood (2008).

4.2 Uncertain and misspecified weights

Following the survey sampling literature, this paper assumes the weights are exact, correct, and

known. They are considered to be the total chance of selection into the sample. In particular,

again following standard practice, the πi are the product of any original sampling weights and any

non-response weights, given a classic sampling context (Groves, Fowler Jr, Couper, Lepkowski,

Singer and Tourangeau, 2011). By contrast, for surveys such as YouGov the non-response is built

in, as the recruited panels are in effect self-selected, so we get the overall weights (which they call

propensity or case weights) directly. Our results are regarding these total weights.

Of course, especially when considering non-response, weights are not known but instead es-

timated using a model and, ideally, a rich set of covariates. This raises two concerns. The first
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is if the weights are systematically inaccurate due to some selection mechanism that has not been

correctly captured. In this case, as the weights are independent of the assignment mechanism, the

SATE estimates are still valid and unbiased. The PATE estimates, however, can be arbitrarily bi-

ased, and this bias is not necessarily detectable. For example, if only those susceptible to treatment

join the study, the PATE estimate will be too high, and there may be no measured covariate that

allows for detection of this.

The second concern is whether there is additional uncertainty that needs to be accounted for,

given the estimated weights, when doing inference for the PATE. There is, although we believe this

uncertainty can often be much smaller than the uncertainty in the randomized experiment itself.3

While this uncertainty could be taken into account, much of the literature does not tend to do

so. Interestingly, it is not obvious whether estimating the weights given the sample could actually

improve PATE precision similar to using estimated propensity scores instead of known propensity

scores—see, for example, Hirano, Imbens and Ridder (2000). We leave this as an area for future

investigation.

For further thoughts on concerns regarding uncertainty in the weights, we point to the litera-

ture on generalizing randomized trials to wider populations, such as discussed in Hartman, Grieve,

Ramsahai and Sekhon (2015) and Imai, King and Stuart (2008). Here, the approach is generally

to estimate units’ propensity for inclusion into the experiment, and then weight units by these

quantities in order to estimate population characteristics. These propensities of inclusion are usu-

ally estimated by borrowing from the propensity score literature for observational studies (Cole

and Stuart, 2010). One nice aspect of this approach is it provides diagnostics in the form of a

placebo test. In particular, the characteristics of the re-weighted control group of the randomized

experiment should match the characteristics of the target population of interest (see Stuart, Cole,

Bradshaw and Leaf (2010) for a discussion).
3Consider that the estimated weights are usually calibrating the full sample to a larger known population, while

the uncertainty of the experiment is of the difference in two subsamples, which will tend to have about four times the
variance, at least.
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Relatedly, O’Muircheartaigh and Hedges (2014) and Tipton (2013) propose post-stratified esti-

mators, stratifying on these estimated weights. In their case, however, they also have the population

proportions of the strata as given, which allows for simpler variance expressions and arguably less

sensitivity to error in the weights themselves. Furthermore, they do not incorporate the unit-level

weights once they stratify. Tipton (2013) investigates the associated bias-variance trade-offs due

to stratification, and gives advice as to when stratification will be effective.

Generalization assumes we know the assignment mechanism, but not necessarily the sampling

mechanism. There is some work on the reverse case, with estimated propensity scores of treatment

and known weights, see DuGoff, Schuler and Stuart (2013). Here the final propensity weights are

also treated as fixed for inference.

4.3 Post-stratification to improve precision

One can improve the precision of an experiment by adjusting for covariates. For an examina-

tion of this under the potential outcome framework, see, for example, Lin (2013). We use post-

stratification for this adjustment. In post-stratification, treatment effects are first estimated within

each of a series of specified strata of the data and then averaged together with weights proportional

to strata size (Miratrix, Sekhon and Yu, 2013).

We use post-stratification because it relies on very weak modeling assumptions and naturally

connects with the weighting involved in estimating the PATE. See Appendix B for the overall

framework and associated estimators. Other estimators that rely on regression and other forms of

modeling are also possible, see Zheng and Little (2003) or, more recently, Si, Pillai and Gelman

(2015). For post-stratification, the more the mean potential outcomes vary between strata, the

greater the gain in precision. And given that it is precisely when the weights and outcomes are

correlated that we must worry about the weights, post-stratifying on them is a natural choice. Such

stratification is easy to implement: simply build K strata pre-randomization (but not necessarily

pre-sampling) by, e.g., taking the K weighted quantiles of the 1/πi as the strata.
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When the units are divided into K quantiles by survey weight, the cut-points of those quantiles

depend on the realized weights of the sample. Because this is still pre-randomization, this does not

impact the validity of the variance and variance-estimation formulae of the SATE estimate of τS .

It does, however, make generating appropriate population variance formulae difficult. Given this,

we propose using the bootstrap, incorporating the variable definition of strata to take this stage

being sample-dependent into account. Bootstrap is natural in that for survey experiments we are

pulling units from a large population, and so simulating independent draws is reasonable. While a

technical analysis of this approach is beyond the scope of this paper, we discuss some particulars

of implementation in Appendix B. Reassuringly, our simulation studies in the next section show

excellent coverage rates.

5 Simulation Studies

We here present a series of simulation studies to assess the relative performance of the respective

estimators. We also assess the performance of the bootstrap estimates of the standard errors.

Our simulation studies are as follows: we generate a large population of size N = 10, 000

with the two potential outcomes and a selection probability for each unit. Using this fixed pop-

ulation, we repeatedly take a sample and run a subsequent experiment, recording the treatment

effect estimates for the different estimators. In particular, we first select a sample of size n, sam-

pling without replacement but with probabilities of selection inversely proportional to the weights.4

Once we have obtained the final sample, we randomly assign treatment and estimate the treatment

effect. After doing this 10,000 times we estimate the overall mean, variance, and MSE of the dif-

ferent estimators to compare their performance to the PATE. We also calculate bootstrap standard

error estimates for all the estimators using the case-wise bootstrap scheme discussed in Appendix

B.
4We ignore a mild technical issue of the πi not being exactly proportional to the weights due to not sampling with

replacement.
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Estimator Mean Bias SE RMSE boot SE Coverage
A
1 τS 40.36 7.77 1.35 7.89
2 νS 32.58 0.00 1.84 1.84
3 τ̂SATE 40.37 7.78 3.14 8.39 3.12 30%
4 τ̂hh 32.62 0.03 3.91 3.91 3.79 95%
5 τ̂ps 32.60 0.01 2.67 2.67 2.69 95%

B
1 τS 30.00 0.00 0.00 0.00
2 νS 30.00 0.00 0.00 0.00
3 τ̂SATE 30.01 0.01 2.58 2.58 2.58 95%
4 τ̂hh 30.03 0.03 3.35 3.35 3.31 95%
5 τ̂ps 30.02 0.02 3.32 3.32 3.29 95%

Table 1: Simulations A & B. Performance of different estimators as estimators for the PATE for
(A) a heterogenous treatment effect scenario with τ = 32.58 and (B) a constant treatment effect
of τ = 30. For each estimator, we have, from left to right, its expected value, bias, standard error,
root mean squared error, average bootstrap SE estimate and coverage across 10,000 trials.

Simulation A. Our first simulation is for a population with a heterogeneous treatment effect that

varies in connection to the weight. See Appendix D for some simple plots showing the structure

of the population and a single sample. Our treatment effect, outcomes and sampling probabilities

are all strongly related. We then took samples of a specified size from this fixed population, and

examined the performance of our estimators as estimators for the PATE.

Results for n = 500 are on Table 1. Other sample sizes such as n = 100, not shown, are

substantively the same. The first two lines of the table show the performance of the two “oracle”

estimators τS (Equation 1) and νS (Equation 6), which we could use if all of the potential outcomes

were known. For τS there is bias because the treatment effect of a sample is not generally the

same as the treatment effect of the population. The Hàjek approach of νS , second line, is therefore

superior despite the larger SE. Line 3 is the simple estimate of the SATE from Equation 2. Because

it is estimating τS , it has the same bias as line 1, but because it only uses observed outcomes, the SE

is larger. Line 4 uses the “double-Hàjek” estimator shown in Equation 7. This estimator is targeting

νS , reducing bias, but has a larger SE relative to line 3 due to the fact that we are incorporating
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weights. Line 5 is the post-stratified “double-Hàjek” given in Appendix B. Units were stratified by

their survey weight, withK = 7 equally sized (by weight) strata. For this scenario, post-stratifying

helps, as illustrated by the smaller SE and RMSE, compared to τ̂hh.

An inspection of the coverage rates reflects what we have already discussed: The estimate

τ̂SATE does not target the PATE while the other two sample estimates, τ̂hh and τ̂ps, do. Therefore

it has terrible coverage. Furthermore, the latter two estimates give correct coverage, which is

reflective of the bootstrap SE estimates hitting their mark.

Simulation B. As a second simulation we kept the original structure between Y (0) and w, but

set a constant treatment effect of 30 for all units. Results are on the bottom half of Table 1. Here,

τS = τ for any sample S, so there is no error in either estimate with known potential outcomes

(lines 1–2). This also means that τ̂SATE is a valid estimate of the PATE and this is reflected

in the lack of bias and nominal coverage rate (line 3). The increase of SE of the weighted and

post-stratified estimators (lines 4–5) reflects the use of weights when they are in fact unnecessary.

Overall the SATE estimate is the best, as expected in this situation.

Simulation C. In our final simulation, we systematically varied the relationship between se-

lection probability and outcomes while maintaining the same marginal distributions in order to

examine the benefits post-stratification.

In our DGP we first generate a bivariate normal pair of latent variables with correlation γ, and

then generate the weights as a function of the first variable and the outcomes as a function of the

second. Then, by varying γ we can vary the strength of the relationship between outcome and

weight. (See Appendix D for the particulars.) When γ = 1, which corresponds to Simulation A,

wi and (Yi(0), Yi(1)) have a very strong relationship and we benefit greatly from post-stratification.

Conversely when γ = 0, wi and (Yi(0), Yi(1)) are unrelated and there will be no such benefit.

For each γ we generated 20 populations, conducting a simulation study within each population.
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Figure 1: Simulation C: (left to right) SE, bias and RMSE of estimates when selection probability
is increasingly related to the potential outcomes. Grey are SATE-targeting, black PATE-targeting.
Solid are oracle estimators using all potential outcomes of the sample, dashed are actual estimators.
The thicker lines are averages over the 20 simulated populations in light gray dots.

We then averaged the results and plotted the averages against γ on Figure 1. The solid lines give

the performance of the oracle estimators τS and νS , and the non-solid lines are the estimators. The

gray lines are estimators that do not incorporate the weights, and the black lines are estimators that

do. The light grey points show the individual population simulation studies; they vary due to the

variation in the finite populations.

We first see that, because both the double-Hàjek and its post-stratified version are targeting νS ,

which in turn estimates the PATE, they remain unbiased regardless of the latent correlation. On the

other hand, the SATE and its estimator, τ̂SATE , are affected. The bias continually increases as the

relationship between weight and treatment effect increases.

As expected, the SE of the estimators that do not use weights, τS and τ̂SATE , stay the same

regardless of γ because the marginal distributions of the outcomes are the same across γ. The

estimators that only use weights to adjust for sampling differences, νS and τ̂hh, also remain the
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same, although their SEs are larger than for τS and τ̂SATE because of incorporating the weights.

We pay for unbiasedness with greater variability. The post-stratified estimator τ̂ps, however, sees

continual precision gains as the weights are increasingly predictive of treatment effect. For low γ, it

has roughly the same uncertainty as τ̂hh, but is soon the most precise of all (non-oracle) estimators.

These conclusions are tied together in the right-most panel of Figure 1, showing the RMSE,

which gives the combined impact of bias and variance on performance. As γ increases, the RMSE

of τ̂SATE steadily climbs due to bias, eventually being the worst at γ = 0.2. Meanwhile, the

post-stratified estimator that exploits weights, τ̂ps, performs better and better. Overall, if weights

are important then 1) the bias terms can be too large to be ignored, and 2) there is something

to be gained by adjusting the estimates of treatment effects with those weights beyond simple

re-weighting. Otherwise, SATE estimators are superior, as incorporating weights can be costly.

6 Real Data Application

To better understand the overall trade offs involved in using weighted estimators of PATE versus

simply estimating the SATE on actual survey experiments, we analyzed a set of survey experiments

embedded in 7 separate surveys fielded by us though YouGov over the course of 5 years. Studies

appeared in two modules of the 2010 Cooperative Congressional Election Study (CCES), one mod-

ule each of the 2012 and 2014 CCES, a survey of Virginia voters run prior to the 2013 gubernatorial

election in that state, and two other national YouGov surveys. Each survey had post-hoc weights

assigned by YouGov through that firm’s standard procedure. Across these surveys were 18 sepa-

rate assignments of respondents to binary treatments. In several of these cases, multiple outcomes

were measured, producing 46 randomization/outcome combinations.5 All of the studies examined

5In the analyses presented here, we use all of these outcomes. We elected to do this because more outcomes provide
more opportunity for divergence between SATE and PATE, and thus a more conservative test of our conclusion that
such divergence is rare. Also, selecting outcomes would represent an added researcher degree of freedom, which we
sought to avoid. In the interest of transparency, we present, in Appendix E, the results of our examination when only
the primary outcome for each randomization is used. Our findings remain the same.

20



were conducted in the United States and focused on topics related to partisan political behavior.6

As such, we make our comparisons of SATE and PATE by looking at Democratic and Republican

respondents separately. This is because treatment effects for such studies are generally highly het-

erogeneous by respondent party identification. Our set of 46 randomization/outcome combinations

produce 92 experiments (half among Democrats and half among Republicans). Sample sizes for

the experiments analyzed range from 145 to 504 . Weights varied substantially in these samples,

ranging from near 0 to around 8, when normalized to 1 across the sample (standard deviation of

1.04). Sixty-five of them (70.7%) showed SATEs that were significantly different from zero. How-

ever, once the weights provided by YouGov were taken into account to estimate the PATE (via the

double-Hàjek estimate) only 52 experiments (56.5%) had significant effects.

Our first finding is that incorporating weights substantially increased the standard errors. Fig-

ure 2(a) shows a 32.1% average increase in standard error estimates of τ̂hh over τ̂SATE across

experiments.

We next examined whether there is evidence of some experiments having a PATE substan-

tially different from the SATE. To do this, we calculated bootstrap estimates of the standard er-

ror for the difference in the estimators, and calculated a standardized difference in estimates of

δ̂ = (τ̂SATE − τ̂hh)/ŜE. If there were no difference between the SATE and the PATE, the δ̂s

should be roughly distributed as a standard Normal. First, the average of these δ̂ is −0.115, giving

no evidence for any systematic trend of the PATE being larger or smaller than the SATE. Second,

when we compared our 92 δ̂ values to the standard normal with a qq-plot (Figure 2(b)), we find

excellent fit. While there is a somewhat suggestive tail departing from the expected line, the bulk

of the experiments closely follow the standard normal distribution, suggesting that the SATE and

PATE were generally quite similar relative to their estimation uncertainty. A test using q-statistics

6Some of the studies featured random assignment of campaign advertisements shown to respondents with ad tone
and partisan source varied. Several of the studies presented respondents with vignettes or news stories describing
candidates or groups of voters with characteristics such as party label and gender randomized. Another set of studies
asked respondents to evaluate artwork when told (or not told) that the art was produced by Presidents Bush and Obama.
More details regarding the specific studies used can be found in Table 2 in the Appendix.
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(modeled after Weiss, Bloom, Verbitsky-Savitz, Gupta, Vigil and Cullinan (2017)) failed to reject

the null of no differences across the experiments (p > 0.99); especially considering the possi-

ble correlation of outcomes would make this test anti-conservative, we have no evidence that the

PATE and SATE estimates differ (see Appendix E for further investigation of this). An FDR test

also showed no experiments with a significant difference.

Finally, we consider whether post-stratification on weights improved precision. Generally, it

did not: the estimated SEs of τ̂ps are very similar to those for τ̂hh, with an average increase of about

0.6%. Further examination offers a hint as to why post-stratification did not yield benefits: the

weights generated by YouGov for these samples do not correlate meaningfully with the outcomes

of interest. In no case did the magnitude of the correlation between weights and outcome exceed

0.23. To further explore potential benefits of post-stratification we examine the effects of adjusting

for a covariate, respondent party identification, on the full experiments not separated by party

ID. Relative to no stratification, if we post-stratify on party ID, weighting the strata by the total

sampled mass in both treatment and control, our PATE estimate shows an average reduction of

1.4% in estimated SEs across experiments with participants of both major parties. If we post-

stratify on both party ID and the weights, we see an average estimated SEs reduction of 1%. These

reductions would in no way make up for the larger SEs from attempting to estimate the PATE.

However, they are consistent with the fact that post-stratification can generally only help.

While this does not imply that scholars need not consider post-stratifying on weights, it does

show that outcomes of interest in political science studies are not necessarily going to be correlated

with these weights. This makes clear the importance of researchers understanding, and reporting,

the process used to generate weights and being aware of the covariates with which those weights

are likely to be highly correlated (for online surveys, such a list would often includes certain racial

and education-level categories).
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Discussion. Overall, it appears that in this context and for these experiments, the survey weights

significantly increase uncertainty, and that there is little evidence that the RMSE (which includes

the SATE-PATE bias) for estimating the PATE is improved by estimators that include these weights.

Furthermore, the weights are not predictive enough of outcome to help the post-stratified estimator.

With regard to post-stratification, we note that in practice the analysis of any particular experiment

would likely be improved by post-stratifying on known covariates predictive of outcome rather

than naı̈vely on the weights.

In understanding these findings, it is useful to consider the ways in which data from these

leading online survey firms (in this case, YouGov) may differ from more convenience-based online

samples. Even unweighted, datasets from these firms tend to be more representative. This is

because they often engage in extensive panel recruitment and retention efforts and assign subjects

from their panels to client samples through mechanisms such as block randomization. As a result,

the unweighted data are often largely representative of the overall population along many relevant

dimensions. Relatedly, firms may use a clean-up matching step, such as the one employed by

YouGov, where they down-sample their data to generate more uniform weights (Rivers, 2006).

This will likely increase the heterogeneity of the final sample, which could decrease precision.7 We

recommend that researchers request the original, pre-weighted data, in order to work with a larger

7Consider a standard scenario wherein a researcher purchases a sample of 1000 respondents. To generate these
data, the survey firm might recruit 1400 respondents, all of whom participate in the study. Two datasets result from
this. The first contains all 1400 respondents. The second is a trimmed version, where the firm drops 400 of the
most overrepresented respondents (which is tantamount to assigning these respondents a weight of 0). This second
set, which comes with weights assigned to each observation, is what many scholars analyze. Some firms will, upon
request, also provide the full data set, but these data do not generally include weights, as the process for generating
these weights is combined with the procedure for trimming down the larger data set by matching it to some frame
based upon population characteristics. The weights will be less extreme than they would have been had the entire
original sample been included, and the trimmed sample will be more heterogeneous, as many similar observations will
be purged. This will make it more difficult to estimate its SATE compared to the full set (do note the SATEs could
differ). Furthermore, post-stratification shows that estimators that include weights for the trimmed set will also be
less variable than for the same estimators on the full dataset (assuming weights could be obtained), even though the
trimmed dataset weights will be less variable. Consider a case with two classes of respondents, reluctant and eager,
equally represented in the population. The trimmed sample will have fewer eager respondents. Then, compared to the
full data set, we will have a less precise estimate of the eager respondents in the trimmed data set. The precision for
the reluctant respondents would be the same. Overall, our combined estimate will be, therefore, less precise.

23



(a)

SE(τ̂hh) SE(τ̂SATE)

F
re

qu
en

cy

0.8 1.0 1.2 1.4 1.6 1.8 2.0

0
2

4
6

8

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

(b)

δ̂ = (τ̂SATE − τ̂hh) SE

S
ta

nd
ar

d 
N

or
m

al

●

●

CCES10_EIT
CCES10_UCB
CCES12
CCES2014
UCB_Follow
Virginia
YouGov

Figure 2: (a) Standardized efficiency of τ̂hh vs τ̂SATE (b) quantile-quantile plot of the relative
differences δ̂ of the estimates for the 92 experiments grouped into the larger surveys they are part
of.

and more homogeneous sample. For the SATE the gains are immediate. For the PATE, one might

generate weights for the full sample by extrapolating from the weights assigned in the trimmed

sample or by contracting with the survey firm to obtain weights for this full unmatched sample.

Then, by post-stratifying on the weights, the researcher can take advantage of the additional units

to increase precision in some strata without increasing variability in the others. For both SATE and

PATE estimation, power would be improved.

7 Discussion and Practical Guidance

We investigate incorporating weights in survey experiments under the potential outcomes frame-

work. We focus on two styles of estimator, those that incorporate these weights to take any selec-

tion mechanisms into account, and those that ignore weights and instead focus on estimating the

SATE. We primarily find that incorporating weights, even when they are exactly known, substan-

tially decreases precision. Because of this, researchers are faced with a trade-off: more powerful
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estimates for the SATE, or more uncertain estimates of the PATE. We conclude with several obser-

vations that should inform how one navigates this trade-off.

The PATE can only be different from the SATE when two things hold: (1) there is meaning-

ful variation in the treatment impact, and (2) that variation is correlated with the weights. See

Equation 3. Moreover, the random assignment of treatment protects inference for the weighted es-

timator, even if the weights are incorrect or known only approximately: because the randomization

of units into treatment is independent of the (possibly incorrect) weights, any inference conditional

on the sample and the weights is a valid inference. When PATE is the estimand, we are estimating

the treatment effect for a hypothetical population defined by the weights and sample, even if it does

not correspond to the actual population. For example, if we find a treatment effect in our weighted

sample, we know the treatment does have an effect for at least some units. See Hartman et al.

(2015) for a discussion of this issue in the case of evaluating the external validity of an experiment.

It is important to compare the PATE and SATE estimates. A meaningful discrepancy between

them is a signal to look for treatment effect heterogeneity and a flag that weight misspecification

could be a real concern. If the estimates do not differ, however, and there is no other evidence

of heterogeneity, then extrapolation is less of a concern—and furthermore the SATE is probably

a sufficient estimate for the PATE. Of course, with misspecified weights if there is heterogeneity

associated with being selected into the experiment, but that is not captured by the covariates, then

PATE estimation can be undetectably biased. For more on assessing heterogeneity, see Ding, Feller

and Miratrix (2016).

Interestingly, our examination of real survey data found no strong connection between the

weights and outcomes. The SATE and PATE estimators tended to be similar. Based on this, we

have several general pieces of practical guidance: (1) When analyzing survey experiments using

high quality, broadly representative samples, such as those recruited and provided by firms like

YouGov and Knowledge Networks, SATE estimates will generally be sufficient for most purposes.

(2) If a particular research question calls for estimates of the PATE, a “double-Hàjek” estimator is
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probably the most straightforward (and a defensible) approach, unless weights are highly correlated

with the outcomes variables. (3) If weights are strongly correlated with a study’s outcome(s) of

interest, post-stratification on the weights with bootstrap standard errors can help offset the cost of

including weights for those seeking to draw population inferences.

This motivates a two-stage approach: first focus on the SATE using the entire, unweighted

sample and determine whether the treatment had impact. This will generally be the most powerful

strategy for detecting an effect, as the weights, being set aside, will not inflate uncertainty esti-

mates. Then, once a treatment effect is established, work on how to generalize it to the population.

This second stage is an assessment of the magnitude of an effect in the population once an effect

on at least some members of the population has been established. First estimate the PATE with the

weights, and then compare it to the SATE estimate. If they differ, then consider working to ex-

plain any treatment effect heterogeneity with covariates, and think carefully about weight quality.

Regardless, ensure that all analyses preserve the original strength of the assignment mechanism;

the weights do not need to jeopardize valid assessment of the presence of causal effects. Part of

preserving valid statistical inference would be to commit to a particular procedure before analyzing

the given dataset. A pre-analysis plan or sample splitting would help prevent a fishing expedition

to find treatment effects.
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Appendix A: A general class of estimators

When estimating the PATE, our overall estimation error is a combination of our error due to the

randomized experiment for estimating νS and the difference between our survey-sampling estimate

νS and the PATE τ . We can break this error down for any estimator τ̂∗ of νS . First, given τ̂∗, we

have E[τ̂∗|S] = νS + bS , with bS being a bias term. Then

MSE[τ̂∗] = E
[
(τ̂∗ − τ)2

]
= E

[
(τ̂∗ − νS)2

]
+ E

[
(νS − τ)2

]
+ 2 ES [bS(νS − τ)] (8)

= ES [MSE[τ̂∗|S]] + MSE[νS ] + 2 ES [bS(νS − τ)]

Given a choice of νS , the first term is the expected MSE of the estimator for estimating νS when we

consider all possible randomizations of treatment assignment on the given sample S. The second

term is the MSE of νS as an estimator for τ across all samples. The third term is a cross-bias term;

it depends on how the bias of a sample is correlated with the error of its νS . We generally assume

it is small and ignore it. This gives a rough formula for the overall mean square error of

MSE[τ̂hh] ≈ ES [MSE[τ̂hh|S]] + MSE[νS ] . (9)

The first term will tend to be a function of the randomization method used and sample-dependent

parameters such as σ2
S(1), σ2

S(0), σ2
S(∆), and, importantly, the choice of estimator τ̂∗. For a given

choice of νS , if we reduce this inner term, we reduce the expectation and therefore increase the

overall precision of the estimator for PATE. We reduce this term with better estimators, e.g., ones

that exploit covariates; this is the goal of post-stratification.

The sampling scheme and choice of νS governs the second term. If we reduce it by changing

νS , we increase precision. The main way to do this is to sample better, e.g., move closer to equal

probability sampling. No estimation strategy can reduce this term.
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Alternate estimators. Given the above, our primary“double-Hàjek” estimator τ̂hh can be viewed

as doubly biased: the expected value across randomizations is approximately νS , and the expected

value of νS is approximately τ . We could instead use Horvitz-Thompson style estimators at either

or both levels to remove these biases. In particular, if we select an estimator that is unbiased at the

randomization level, i.e. E[τ∗|S] = νS , then we have

MSE[τ̂∗] = ES [Var[τ̂∗|S]] + VarS [νS ] + (ES [νS ]− τ)2

One such estimator is the “single-Hàjek” estimator of

τ̂h =
1

Zp

N∑
i=1

SiTiwiyi(1)− 1

Z(1− p)

N∑
i=1

Si(1− Ti)wiyi(0).

This estimator is tied to double-Hàjek by E[Z1|S] = pZ and E[Z0|S] = (1− p)Z. It is a Horvitz-

Thompson estimator with respect to the randomization for the two parts of our estimand νS . In-

terestingly, this estimator has the same asymptotic variance expression found in Theorem 4.1 as

τ̂hh.

Finally, if ES [νS ] = τ we have

MSE[τ̂∗] = ES [Var[τ̂∗|S]] + VarS [νS ] .

For fixed n, we have such an estimator as

τ̂sd =
1

n1

∑
i∈S

Tiwiyi(1)− 1

n− n1

∑
i∈S

(1− Ti)wiyi(0). (10)

This estimator generally pays a large price for unbiasedness with high variance.
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Appendix B: Post-Stratification for PATE in Survey Experiments

Post-stratification is motivated by viewing PATE estimation as a two step process. In particular,

estimators νS that have higher precision will give overall gains. Say we had a categorical covariate

b associated with our outcomes. We can then express our overall estimand τ as:

τ =
K∑
k=1

Nk

N

(
1

Nk

∑
i:bi=k

(yi(1)− yi(0))

)
=

K∑
k=1

fkτk

with Nk being the number of units in the population in stratum k and fk = Nk/N being the

proportion of the population in stratum k. We could then estimate the population τk with strata

level estimators of

νSk =
1

Zk

∑
i:bi=k

wi(yi(1)− yi(0)).

As before, we would then need to estimate these νSk.

This motivates a post-stratified estimator as a combination of estimates of population strata size

estimates and population strata effect estimates:

τ̂ps =
K∑
k=1

f̂kτ̂k

where f̂k = Zk/Z estimates fk, with the Z being the total weight in the sample and the

Zk =
∑
i:bi=k

wiSi for k = 1, . . . , K

being the total weights of the strata. These are not dependent on the randomization so

E[τ̂ps|S] =
K∑
k=1

f̂k E[τ̂k|S] .

If we had population knowledge we might actually know the fk and simply plug them in; this
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connects to the generalization of experiments. See, for example, Tipton (2013).

For the τk we have several options. Arguably the most natural is the double-Hàjek estimator of

τ̂k =
1

Zk1

∑
i:bi=k

SiTiwiyi(1)− 1

Zk0

∑
i:bi=k

Si(1− Ti)wiyi(0)

with Zk1 being the total weight in the treatment group in stratum k, and similarly for the control.

The τ̂k will have the usual bias from being Hàjek estimators. Here, however, this bias is of order

nk, not n (see Lemma 2.1), and so could potentially be larger than one might expect.

Regardless, combining gives our final

τ̂ps =
K∑
k=1

Zk
Z

(
1

Zk1

∑
i:bk=k

SiTiwiyi(1)− 1

Zk0

∑
i:bk=k

Si(1− Ti)wiyi(0)

)
. (11)

If we want to avoid this bias, we could instead use a single-Hàjek estimator in each strata:

τ̂
(h)
k =

nk
Zk

(
1

nTk

∑
i:bi=k

Tiwiyi(1)− 1

nk − nTk

∑
i:bi=k

(1− Ti)wiyi(0)

)
.

For the single-Hàjek, we immediately have E
[
τ̂

(h)
k |S

]
= νSk

, i.e., unbiasedness in the randomiza-

tion step. This also causes the Zk to cancel. If the weights within strata are generally homogenous,

the single-Hàjek will be essentially the same as the double. And if b is built by stratifying on

weights then we would indeed expect such homogeneity. Thus, with post-stratification, we can

remove some bias for very little cost in variance.

7.1 Variance Estimation

As discussed in the main text, the post-stratification step can be sample-dependent. For example,

if the units are divided into K quantiles by survey weight, the cut-points of those quantiles depend

on the realized weights of the sample. Because this is still pre-randomization, this does not impact
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the validity of the variance and variance-estimation formulae of the SATE estimate of τS . It does,

however, make generating appropriate population variance formulae difficult. Furthermore, even

if the strata are pre-defined, the formulae of Theorem 4.1 are actually for a linearized version of

the ratio estimators, and as the strata are smaller than the overall sample, one might be concerned

that these approximations would be not that good when applied to individual strata. This is why

we propose the bootstrap.

Appropriate implementation of the bootstrap deserves some discussion. Bootstrap is a “by

analogy” technique. To obtain the variability of an estimator we repeatedly simulate obtaining a

sample from some population using our hypothesized sampling mechanism, randomizing it into

treatment, and estimating the treatment effect using our estimator on that sample. We first, there-

fore, need to have a population to sample from. Our best estimate of this population is the sample

weighted by the weights. We then take a size-n i.i.d. sample from this population with prob-

ability proportional to the inverse of these weights. The treatment assignment being Bernoulli

means we take a case-wise bootstrap, bootstrapping the original treatment assignment along with

the outcome. This avoids any need to impute any missing potential outcomes.

The up-weighting and subsequent weighted sampling steps collapse to generating a bootstrap

sample by taking a classic with-replacement unweighted sample (i.e., a case-wise bootstrap) from

the original sample of the triples (Y obs
i , Zi, wi).

Appendix C: Derivations

In the following we derive the bias of the Hàjek estimator, show that it is small, and derive the bias

of τSATE as an estimator for the PATE. After this we show how a weighted OLS regression can

be used in practice to estimate the double-Hàjek. Finally, we derive properties of the unstratified

PATE estimators.
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Bias of the Hàjek Estimator

The proof of Lemma 2.1, that the bias of a Hàjek estimator isO(1/E[n]), follows a similar strategy

to the proof of Result 6.34 in Cochran (1977). That result is of the bias of a general ratio estimator

for a fixed sample size under simple random sampling. We adapt this result to the Hàjek estimator

(also a ratio estimator) under independent Poisson random sampling with variable sample size. A

fixed sample size correction is possible, but is not needed for our purposes.

We extend the notation described in Section 2.1. Denote Zy =
∑N

i=1
π̄
πi
Siyi so that we can

write ŷH = Zy

Z
. The expected values of both the numerator and denominator are

E[Zy] = Nπ̄µ, (12)

E[Z] = Nπ̄.

These results alone should motivate why the Hàjek estimator should be approximately unbiased,

but let us be a bit more rigorous. By first manipulating the difference of the estimator and its

target and then applying the first order Taylor approximation, (1 +A)−1 =̇ (1−A), we can get the

approximate difference.

ŷH − µ =
Zy
Z
− µ =

Zy − µZ
Z

= (Zy − µZ)
1

Z

= (Zy − µZ)
1

Nπ̄

Nπ̄

Z
= (Zy − µZ)

1

Nπ̄

(
Z

Nπ̄

)−1

= (Zy − µZ)
1

Nπ̄

(
Nπ̄ + (Z −Nπ̄)

Nπ̄

)−1

= (Zy − µZ)
1

Nπ̄

(
1 +

Z −Nπ̄
Nπ̄

)−1

=̇ (Zy − µZ)
1

Nπ̄

(
1− Z −Nπ̄

Nπ̄

)

Taking expectations and noting that E[Zy − µZ] = 0 by Equation 12 leads to the approximate
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bias:

E[ŷH ]− µ =̇ − 1

(Nπ̄)2
E [(Zy − µZ)(Z −Nπ̄)] (13)

= − 1

(Nπ̄)2

(
E[ZyZ]−Nπ̄ E [Zy] +Nπ̄µ E [Z]− µ E [Z2]

)
.

These expanded terms can be calculated individually for our estimator using properties of variance

and covariance.

E[ZyZ] = Cov(Zy, Z) + E[Zy] E [Z] (14)

=
N∑
i=1

N∑
j=1

π̄2

πiπj
yi Cov(Si, Sj) + (Nπ̄µ)(Nπ̄)

=
N∑
i=1

π̄2

π2
i

yi V ar(Si) +N2π̄2µ

= π̄2

N∑
i=1

1− πi
πi

yi +N2π̄2µ

= π̄2

N∑
i=1

yi
πi
−Nπ̄2µ+N2π̄2µ

E[Z2] = V ar(Z) + E[Z]2 (15)

=
N∑
i=1

π̄2

π2
i

var(Si) +N2π̄2

= π̄2

N∑
i=1

(
1

πi
− 1

)
+N2π̄2

= π̄2

N∑
i=1

1

πi
−Nπ̄2 +N2π̄2
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Finally, substitute Equations 12, 14 and 15 into Equation 13 and simplify:

E[ŷH ]− µ =̇− 1

(Nπ̄)2

(
π̄2

N∑
i=1

yi
πi
−Nπ̄2µ+N2π̄2µ

−N2π̄2µ+N2π̄2µ

− µπ̄2

N∑
i=1

1

πi
+Nπ̄2µ+N2π̄2

)

= − 1

Nπ̄

(
π̄

1

N

N∑
i=1

yi
πi
− µπ̄ 1

N

N∑
i=1

1

πi

)

= − 1

E[n]

(
π̄

1

N

N∑
i=1

yi − µ
πi

)

= − 1

E[n]

(
1

N

N∑
i=1

(yi − µ)
π̄

πi

)
.

We finally use the relation

Cov[A,B] = E
[
(A− Ā)(B − B̄)

]
= E

[
(A− Ā)B

]
− E

[
(A− Ā)B̄

]
= E

[
(A− Ā)B

]
to get our final covariance formulation.

We have ignored a mild technical issue of an undefined estimator with probability P{Z = 0}.

For the Poisson selection scheme, with the Si independent, P{Z = 0} =
∏

(1 − πi) which will

be exponentially small in n. Letting the estimator be defined as 0 under this circumstance gives a

bounded, exponentially small term far less in magnitude than other bias terms.
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Bias of the SATE for the PATE

To see that τ̂SATE (or τS) is a biased estimate for PATE, assume fixed sample size n to obtain:

E[τ̂SATE] = ES [E[τ̂SATE|S]] = ES [τS ] = ES

[
1

n

N∑
i=1

Si(yi(1)− yi(0))

]

=
1

N

N∑
i=1

Nπi
n

(yi(1)− yi(0)) .

For a random sample size, there is an additional, but negligible, a bias term. We can see that the

above is a first order approximation of the overall bias by replacing ES
[
Si/n
]

with ES[Si]/ES[n]. The

difference in these terms is of order 1/n, as with our bias lemma.

The double-Hàjek as weighted OLS

In Section 4.1 we introduced the “double-Hàjek” estimator. Here we show that this estimate is

equivalent to a weighted OLS where the weights are wi = π̄
πi

and we regress on the treatment

indicator. In other words we fit the model

yi = α + τTi + εi

with weights wi. The weighted OLS estimates α̂ and τ̂ are the solutions to the normal equations:

∑
i∈S

wi(yi − α̂− τ̂Ti) = 0, (16)

∑
i∈S

wiTi(yi − α̂− τ̂Ti) = 0. (17)

These are obtained by taking derivatives with respect to α and τ of the weighted sum of squares,∑
i∈S wi(yi − α − τTi)

2, and setting them to 0. Grouping by treatment indicators, we get the
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following:

∑
i:Ti=1

wi(yi − α̂− τ̂) +
∑
i:Ti=0

wi(yi − α̂) = 0,

∑
i:Ti=1

wi(yi − α̂− τ̂) = 0.

Taking the difference of these equations implies that

α̂ =

∑
i:Ti=0wiyi∑
i:Ti=0 wi

.

To make the connection to the “double-Hàjek” estimate, denote Z0 =
∑

i:Ti=0 wi and Z1 =∑
i:Ti=1wi, as before. If we distribute the summation in the second normal equation (Equation 17),

we get

∑
i:Ti=1

wiyi − α̂Z1 − τ̂Z1 = 0

∑
i:Ti=1

wiyi −
Z1

Z0

∑
i:Ti=0

wiyi − τ̂Z1 = 0

τ̂ =
1

Z1

∑
i:Ti=1

wiyi −
1

Z0

∑
i:Ti=0

wiyi

Written in the most general sense and replacing the weights, we get back our “double-Hàjek”

estimate.

τ̂hh =
1

Z1

N∑
i=1

SiTi
π̄

πi
yi(1)− 1

Z0

N∑
i=1

Si(1− Ti)
π̄

πi
yi(0)

Hence one way of calculating τ̂hh is by fitting a weighted OLS regression onto the treatment

indicator and inspecting the coefficients.
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Properties of τ̂hh

Our estimator can be expressed as

τ̂hh =
1

Z1

N∑
i=1

SiTi
π̄

πi
yi(1)− 1

Z0

N∑
i=1

Si(1− Ti)
π̄

πi
yi(0)

= µ̂(1)− µ̂(0).

For the expectation of τ̂hh, we have

E[τ̂hh|S] ≈ E

[
1

E[Z1|S]

N∑
i=1

SiTi
π̄

πi
yi(1)− 1

E[Z0|S]

N∑
i=1

Si(1− Ti)
π̄

πi
yi(0)|S

]

=
1

Z

N∑
i=1

Si
π̄

πi
yi(1)− 1

Z

N∑
i=1

Si
π̄

πi
yi(0) = νS

For variance we use results and notation from Särndal, Swensson and Wretman (2003) to obtain

approximate variance terms as follows. Define S̃i = SiTi as the event of unit i being selected and

also treated. We then have π̃i = E
[
S̃i

]
= pπi and the probability that units j and k are both

selected and treated is

π̃jk = E
[
S̃j = 1 and S̃k = 1

]
= P{Tj = 1 and Tk = 1|Sj = 1, Sk = 1} πjk

For the treatment group specifically we have

µ̂(1) =
π̄
∑N

i=1 SiTi
yi(1)
pπi

π̄
∑N

i=1 SiTi
1
pπi

=

∑N
i=1 SiTi

yi(1)
pπi∑N

i=1 SiTi
ri
pπi

=

∑
S̃ y̌i∑
S̃ ři

=
t̂y

t̂r
.

with ri = 1. The check notation denotes a value divided by its probability of being included in the

sample: ǎi = ai/πi. The above is a classic ratio estimator with selection probabilities of π̃j for the
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ratio of

R =
ty
tr

=

∑N
i=1 yi(1)∑N
i=1 ri

=

∑N
i=1 yi(1)

N
= µ(1)

since tr =
∑N

i=1 ri = N .

The approximate variance of a ratio estimator (Särndal, Swensson and Wretman, 2003) is:

AV (µ̂(1)) =
1

t2r

N∑
j=1

N∑
k=1

∆̃jk
yj(1)−Rrj

π̃j

yk(1)−Rrk
π̃k

=
1

N2

∑∑
∆̃jk

yj(1)− µ(1)

pπj

yk(1)− µ(1)

pπk

=
1

N2

∑∑ ∆̃jk

p2πjπk
(yj(1)− µ(1)) (yk(1)− µ(1))

with

∆̃jk ≡ π̃jk − π̃jπ̃k = π̃jk − p2πjπk.

We can estimate this variance with a sum over the treatment group of

V̂ (µ̂(1)) =
1

N̂2

N∑
j=1

N∑
k=1

SjTjSkTk
∆̃jk

π̃jkp2πjπk
(yj(1)− µ̂(1)) (yk(1)− µ̂(1))

with µ̂(1) = 1

N̂

∑N
i=1 SiTiy̌i(1) and N̂ =

∑
SiTi/πip.

The Poisson-Bernoulli Model. Under Poisson selection we have πjk = πjπk for j 6= k (with

πjj = πj). With Bernoulli assignment we have π̃jk = p2πjπk for j 6= k (with π̃jj = pπj) giving
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∆̃jk = 0 for j 6= k and ∆̃jj = pπj(1− pπj) for j = k. This gives

AV (µ̂(1)) =
1

N2

N∑
j=1

1− pπj
pπj

(yj(1)− µ(1))2

and

V̂ (µ̂(1)) =
1

N̂2

N∑
j=1

SjTj
1− pπj
p2π2

j

(yj(1)− µ̂(1))2 .

The above formula are problematic in that they depend on our πj rather than the weights wj =

p̄i/πj). However, if we assume N � n we can make progress. In particular, in this case, under

mild regularity conditions on the sampling probabilities, we can assume πj � 1 for all j. This

means that 1− pπj ≈ 1. Couple this with Nπ̄ = E[n] to get a fairly tight upper bound on our two

formula of

AV (µ̂(1)) ≤ 1

p E[n]

1

N

N∑
j=1

wj (yj(1)− µ(1))2

and, using N̂ = Z1/(π̄p) with Z1 =
∑
SjTjwj ,

V̂ (µ̂(1)) =
π̄2

Z2
1

N∑
j=1

SjTj
1− pπj
π2
j

(yj(1)− µ̂(1))2

≤ 1

Z2
1

N∑
j=1

SjTjw
2
j (yj(1)− µ̂(1))2 .

Finally, to get overall variance presented in Theorem 4.1 we first view the sample into the

treatment arm as independent of the sample into the control arm, which is again motivated by the

N � n assumption. For the control arm, we then do the above derivation with S̃i = Si(1 − Ti)

and π̃i = (1 − p)πi. More lengthy derivations that account for the dependence structure will give

higher-order terms which are in the end negligible. See Wood (2008) for an approach.
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Appendix D: The simulation’s DGP
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5
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0

0 50 150

−
50

50 0.65 0.18

0.5 1.5 2.5

0.38
∆i

(a) Population characteristics for Simulation A where the heterogeneous treatment effect varies in connec-
tion to the weight. Yi(1) and Yi(0) are respectively the treatment and control potential outcomes, wi is the
unit weight (units are sampled inversely proportional to this) and ∆i is the individual treatment effect.

Yi(1)
0 50 100 1 3 5 7

0
10

0

0
10

0

0.61
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(b) Characteristics of a sample from Simulation A. bi is the post-stratification generated on this particular
sample.

Figure 3: Characteristics of the Population and a Sample from Simulation A

In this section we provide additional simulation details and explanations of some of the choices

made throughout the simulations of Section 5. In all our simulations, the potential outcomes are
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simulated as nonlinear functions of the weights.

To generate our populations we use the following algorithm: let γ ∈ [0, 1] be a correlation

measuring the strength of the relationship between the weights and outcomes. We then generate

two latent parameters (εi, ε̃i) as a bivariate standard normal draw with correlation γ. (We do this

by generating εi ∼ N(0, 1), and ε̃ = γεi +
√

1− γ2ηi, with ηi ∼ N(0, 1).)

We then generate uniformly distributed weights on pre-specified interval (a, b) by using the

c.d.f. transformation:

wi = a+ b Φ(εi),

where Φ is the standard normal c.d.f. We also generate shadow weights

w̃i = a+ b Φ(ε̃i),

also uniform, and with the same distribution as wi.

Our potential outcomes are then a function of the shadow weights w̃i:

Yi(0) = 120− 20
√
w̃i + 5εi

Yi(1) = Yi(0) + 10
√
b− w̃i

with εi as independent Gaussian noise. The treatment potential outcomes are generated to give a

non-linear heterogeneous treatment effect. When γ = 1, w̃i = wi, giving the strongest possible

relationship between outcome and weight. Conversely when γ = 0 the weights are completely

unrelated to the potential outcomes, so stratifying on them should not help improve estimation.

Once we have a population, we then sample inversely proportional to the weight wi. For

example, in Simulation A we take a fixed sample size of n = 500 (5% of the population). Our

post-stratification estimator stratifies based on the weight wi to increase precision. The stratifying

variable bi is defined in Section 7.
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Simulation A has maximal covariance, with γ = 1. Figure 3 shows a subset of the popula-

tion and a sample from this scenario to illustrate the structure of our DGP. Figure 3a shows the

characteristics of the simulated population while Figure 3b shows how a weighted sample might

look.

Overall, Figure 3 shows that the weight wi and potential outcome distributions differ in the

sample and population. Furthermore, because the potential outcomes are related to the weights

they are consequently related to the post-stratification levels bi in the sample.

For Simulation B we simply replace the formula for Yi(1) with a constant treatment effect of

30, so Yi(1) = Yi(0) + 30. We still have the sample general relationships between the sample and

population, but as we see in Section 5 the estimators behave quite differently.

For Simulation C we varied γ, which controls the relationship between the weight and the

potential outcomes. The top two right-most panels of Figure 3b show there is smaller variability

within strata for Yi(0) and Yi(1) than if we consider the entire sample at once. As our weights

become less predictive of outcome, this variability will increase. Our formulation, however, main-

tains the marginal distributions of wi, Yi(0), and Yi(1) as γ changes so that any benefits we see

from post-stratification can only be attributed to the changing relationship.

Appendix E: Further Details and Results of the Real Data Ap-

plication

As mentioned in the main text, the 92 survey experiments analyzed in Section 6 were generated

from 18 unique randomizations on 7 separate surveys. We split each randomization by subject

party identification and considered multiple outcomes per treatment randomization. One might

worry that the potential correlation of the multiple outcomes might be influencing the results, so

we append here the results when considering only one unique outcome per randomization.

The 18 unique randomizations give rise to 36 survey experiments after splitting each random-
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ization by subject party identification, considering only the larger Democratic and Republican

leaning subgroups. 28 of them (77.8%) showed SATEs that were significantly different from zero.

Once the weights were taken into account to estimate the PATE (via the double-Hàjek estimate)

25 experiments (69.4%) had significant effects. Even though more experiments showed signifi-

cant PATE than SATE estimates, incorporating weights still increased standard errors: there was a

31.7% average increase in variance of τ̂hh over τ̂SATE across experiments. The raw SE increases

can be seen in Figure 4(a).

We further examined whether there is evidence of some experiments having a PATE substan-

tially different from the SATE. We calculated the 36 δ̂ values and compared them to a standard

normal with a qq-plot (Figure 4(b)). While visually there do seem to be some distributional depar-

tures from a standard Normal, a KolmogorovSmirnov test does not support this hypothesis (with

a p-value of 0.14). Furthermore, an FDR test also fails to find any experiments with significant

differences. All of this suggests a general equivalence between the SATE and the PATE in this

subset of experiments as well.

To explore whether post-stratification on weights improved precision, we compared the esti-

mated SEs. The estimated SEs of τ̂ps are very similar to those for τ̂hh, with an average increase

of about 0.3%. Post-stratifying on party ID on the original 18 experiments led to modest variance

reduction. Relative to no stratification, we see an average reduction of 1.6% in variance across

experiments with participants of both major parties. If we post-stratify on both party ID and the

weights, we see an average reduction of 1.4%. These findings, similar to the main text, show that

while post-stratification should help reduce the variance in theory the gains can be rather modest

in practice.
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Figure 4: (a) Standardized efficiency of estimates of τ̂hh vs τ̂SATE . (b) quantile-quantile compari-
son plot of the relative difference δ̂ of the estimates for the 36 experiments grouped by containing
survey.
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