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This supplementary material has an expanded version of the variance formula proof plus
some other lemmas and smaller proofs not included in the main paper. Following these proofs
are some simple toy examples that illustrate how post-stratification compares to blocking
and simple-difference estimators in various circumstances.

Conditioning on D Maintains Assignment Symmetry

Assume the original randomization is Assignment Symmetric. The event D of τ̂ps being
defined is a function of W , the vector of number of treated units in the strata:

1D = f(W ) ≡
K∏
k=1

1{Wk>0}1{Wk<nk}

Treatment assignment pattern Tk is independent of pattern Ti given W , so since D is a
function ofW , Tk is independent of Ti givenW,D: conditioning onD maintains independence
of treatment assignment patterns.

Now let Ωw be the space of possible values of W and consider two assignment patterns s
and t in stratum k. We have

P{Tk = s|W = w} = P{Tk = s|Wk = wk} = P{Tk = t|Wk = wk} = P{Tk = t|W = w}

due to the unconditioned Assignment Symmetry. Then

P{Tk = s|Wk = `,D} =
1

Z

∑
w∈ΩW

P{Tk = s|W = w}1{wk=`}1{f(w)=1}P{W = w}

= P{Tk = t|Wk = `,D}

with Z =
∑

1{wk=`}1{f(w)=1}P{W = w}. Therefore. conditioning on D maintains equiprob-
able treatment assignment patterns.
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Full Derivation for Theorem 2.1

This section fills out details missing in the proof of Theorem 2.1 in Appendix A of the main
paper. As discussed there, under Assignment Symmetry the chance of any given unit being
treated is Wk(1)/nk so

E [Ti|Wk(1)] =
Wk(1)

nk

for unit i in stratum k. Then

E
[

Ti
Wk(1)

]
= E E

[
Ti

Wk(1)
|Wk(1)

]
= E

[
1

nk

]
=

1

nk
.

Rearrange β1k ≡ E [Wk(0)/Wk(1)] = nk E [1/Wk(1)] − 1 to get E [1/Wk(1)] = (β1k + 1)/nk
and

E
[

T 2
i

W 2
k (1)

]
= E E

[
Ti

W 2
k (1)
|Wk(1)

]
=

1

nk
E
[

1

Wk(1)

]
=
β1k + 1

n2
k

.

These derivations are easier if we use α1k ≡ E [1/Wk(1)], but the β’s are more interpretable
and lead to nicer final formula. To continue, Assignment Symmetry gives

E [TiTj|Wk(1) = w] = P{Ti = 1 ∧ Ti = 1|Wk(1) = w}

=

(
nk−2
w−2

)(
nk

w

) =
(nk − 2)!

(w − 2)!(nk − w)!
· w!(nk − w)!

nk!

=
w(w − 1)

nk(nk − 1)

so

E
[
TiTi
W 2
k (1)

]
= E

[
Wk(1)(Wk(1)− 1)

W 2
k (1)

]
· 1

nk(nk − 1)
=
−β1k + n− 1

n2
k(nk − 1)

.

There are analogous formula for the control unit terms. Similarly,

E
[
Ti(1− Ti)
Wk(1)Wk(0)

]
= E

[
Wk(1)(nk −Wk(1))

Wk(1)Wk(0)

]
· 1

nk(nk − 1)
=

1

nk(nk − 1)
.

We use these relationships to compute means and variances for the strata-level estimators.

Unbiasedness. The strata-level estimators are unbiased:

E[τ̂k] = E

[∑
i:bi=k

Ti
Wk(1)

yi(1)−
∑
i:bi=k

1− Ti
Wk(0)

yi(0)

]

=
∑
i:bi=k

E
[

Ti
Wk(1)

]
yi(1)−

∑
i:bi=k

E
[

1− Ti
Wk(0)

]
yi(0)

=
∑
i:bi=k

1

nk
yi(1)−

∑
i:bi=k

1

nk
yi(0) = τk.
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Variance. Var[τ̂k] = E [τ̂ 2
k ]− τ 2. E [τ̂ 2

k ] breaks down into three big terms:

E[τ̂ 2
k ] = E

[∑
i:bi=k

Ti
Wk(1)

yi(1)

]2

︸ ︷︷ ︸
(a)

− 2 E

[(∑
i:bi=k

Ti
Wk(1)

yi(1)

)(∑
i:bi=k

1− Ti
Wk(0)

yi(0)

)]
︸ ︷︷ ︸

(b)

+E

[∑
i:bi=k

1− Ti
Wk(0)

yi(0)

]2

︸ ︷︷ ︸
(c)

.

Simplify the three parts of the above. For part (a):

(a) = E

[∑
i:bi=k

T 2
i

n2
k(1)

y2
i (1) +

∑
i 6=j

TiTi
n2
k(1)

yi(1)yi(1)

]

=
∑
i:bi=k

E
[
T 2
i

n2
k(1)

]
y2
i (1) +

∑
i 6=j

E
[
TiTi
n2
k(1)

]
yi(1)yi(1)

=
β1k + 1

n2
k

∑
i:bi=k

y2
i (1) +

−β1k + nk − 1

n2
k(nk − 1)

∑
i 6=j

yi(1)yi(1).

Part (c) is similar. The cross-terms are:

(b) = 2 E

[∑
i:bi=k

Ti
Wk(1)

yi(1)
1− Ti
Wk(0)

yi(0)

]
+ 2 E

[∑
i 6=j

Ti
Wk(1)

yi(1)
1− Ti
Wk(0)

yi(0)

]

= 0 + 2
∑
i 6=j

E
[

Ti
Wk(1)

1− Ti
Wk(0)

]
yi(1)yi(0)

=
2

nk(nk − 1)

∑
i 6=j

yi(1)yi(0).

The first term vanishes since Ti(1− Ti) = 0 always.
These are the three parts of the expectation of the square. We have related components

in τ 2
k when you expand the square:

τ 2
k =

(∑
i:bi=k

1

nk
yi(1)

)2

︸ ︷︷ ︸
(a′)

− 2

(∑
i:bi=k

1

nk
yi(1)

)(∑
i:bi=k

1

nk
yi(0)

)
︸ ︷︷ ︸

(b′)

+

(∑
i:bi=k

1

nk
yi(0)

)2

︸ ︷︷ ︸
(c′)

.
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The variance is Var[τ̂k] = (a)−(a′)−(b)+(b′)+(c)−(c′), a sum of several ugly differences.
Expanding (a′) and plugging in gives the first difference:

(a)− (a′) =
β1k + 1

n2
k

∑
i:bi=k

y2
i (1) +

−β1k + nk − 1

n2
k(nk − 1)

∑
i 6=j

yi(1)yi(1)− 1

n2
k

∑
i:bi=k

y2
i (1)− 1

n2
k

∑
i 6=j

yi(1)yi(1)

=

(
β1k + 1

nk
− 1

n2
k

) ∑
i:bi=k

y2
i (1) +

(
−β1k + nk − 1

n2
k(nk − 1)

− 1

n2
k

)∑
i 6=j

yi(1)yi(1)

=
β1k

nk

[
1

nk

∑
i:bi=k

y2
i (1)− 1

nk(nk − 1)

∑
i 6=j

yi(1)yi(1)

]

=
β1k

nk
σ2
k(1).

(c)− (c′) is similar. The cross terms are:

(b)− (b′) =
2

nk(nk − 1)

∑
i 6=j

yi(1)yi(0)− 2

n2
k

∑
i:bi=k

yi(1)yi(0)− 2

n2
k

∑
i 6=j

yi(1)yi(0)

=

(
2

nk(nk − 1)
− 2

n2
k

)∑
i 6=j

yi(1)yi(0)− 2

n2
k

∑
i:bi=k

yi(1)yi(0)

= − 2

nk

[
1

nk

∑
i:bi=k

yi(1)yi(0)− 1

nk(nk − 1)

∑
i 6=j

yi(1)yi(0)

]

= − 2

nk
γk(0, 1).

Sum the above to get the variance formula.

Proof of Lemma 10.2

We restate Lemma 10.2 for reference:

Lemma 1. Let W be a Binomial (n, p) random variable or a hypergeometric (n,w,N)
random variable, i.e., a sample of size n from coin flips with probability of heads p or an urn
with N = nc balls, c > 1, of which w = ncp are white. Then for Y = (n/W )1{W>0}:

−2(1− p)n

p
≤ E [Y ]− 1

p
≤ 4

p2

1

n
− 1

n+ 1

1

p
+ max

[(
n

2
− 4

p2n

)
exp

(
−p

2

2
n

)
, 0

]
.

Proof: First we derive the lower bound on the expectations. For ease of notation, define
E [X;A] as the expectation of X1{A}. For both Bernoulli assignment or complete random-
ization,

np = E [W ] = E [W ;W > 0] = E [W |W > 0]P{W > 0} .
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Also, P{W = 0} ≤ (1− p)n. For a random variable X > 0, E [1/X] ≥ 1/ E [X]. Therefore

E
[ n
W

;W > 0
]

= E
[ n
W
|W > 0

]
P{W > 0}

≥ n

E [W ;W > 0]
P{W > 0}2

=
1

p
+

1

p

(
P{W > 0}2 − 1

)
≥ 1

p
− 2

p
(1− p)n

For the upper bound, expand E [n/W ;W > 0] into two terms and analyze each term. Namely,
we will show that E [n/W ;W > 0] = I +D with

I ≡ E
[

n

W + 1
;W > 0

]
≤ 1

p
− 1

n+ 1

1

p

and

D ≡ E
[
n

W
− n

W + 1
;W > 0

]
= E

[
n

W (W + 1)
;W > 0

]
≤ min

0<αn<p

{
1

n

(
1

p− αn

)2

+ max

[(
n

2
− 1

n

(
1

p− αn

)2
)

exp(−2nα2
n), 0

]}

Instead of minimizing the bound across the possible values of αn, we can simply fix αn = p/2
to obtain a looser, but more intelligible, bound:

D ≤ 4

p2

1

n
+ max

[(
n

2
− 4

np2

)
exp(− p

2

2
n), 0

]
.

We show D first. Let αn be in (0, p). Then:

D = E
[

n

W (W + 1)
; p− W

n
< αn

]
+ E

[
n

W (W + 1)
1{W>0}; p−

W

n
≥ αn

]
.

≤ 1

n
E
[( n
W

)2

; p− αn <
W

n

]
+
n

2
P

{
p− W

n
≥ αn

}
.

The n/2 is because W > 0 implies W ≥ 1.
Hoeffding (1963) famously bounded the tail probabilities of sums of independent random

variables, allowing us to control the probability of W/n being far from p. He also, in section
6 of the same work, generalized his bound to the hypergeometric. We use both of these
results:

P

{
p− W

n
≥ αn

}
≤ exp(−2nα2

n).
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Because 0 < p− αn < W/n we have

D ≤ 1

n

(
1

p− αn

)2(
1−P

{
p− W

n
≥ αn

})
+
n

2
P

{
p− W

n
≥ αn

}
≤ 1

n

(
1

p− αn

)2

+ max

[(
n

2
− 1

n

1

(p− αn)2

)
exp(−2nα2

n), 0

]
.

The max(·, ·) comes from the choice of αn possibly making n/2 − 1/n(p − αn)2 < 0 which
would invert the Hoeffding bound. We instead conservatively set this quantity to 0.

To evaluate I, consider the Binomial case first. Express the expectations as a sum and
re-index the sum and add in the first two terms to get the sum of the distribution of a
(n+ 1, p) binomial variable:

I ≡ E
[

n

W + 1
;W > 0

]
=

n∑
k=1

n

k + 1

n!

k!(n− k)!
pk(1− p)n−k

=
n

n+ 1

1

p

(
n+1∑
k=0

(n+ 1)!

k!(n+ 1− k)!
pk(1− p)n+1−k − (1− p)n+1 − (n+ 1)p(1− p)n

)
=

n

n+ 1

1

p

(
1− (1− p)n+1 − (n+ 1)p(1− p)n

)
=

1

p
− 1

n+ 1

1

p
− n

n+ 1

1

p
(np+ 1)(1− p)n.

This is exact for the Binomial case. To extend to complete randomization, we use a fur-
ther result from Hoeffding. Hoeffding showed that, for a continuous, convex function f(x),
Esrs [f(W )] ≤ Ebin [f(W )]. Let f(x) be n/(x + 1). f(x) is continuous, convex for x ≥ 0.
Furthermore for Binomial W

E
[

n

W + 1
;W > 0

]
+ n(1− p)n = E [f(W )]

as n/(W + 1) = f(W ) for all W . So

Esrs[
n

W + 1
;W > 0] ≤ Esrs [f(W )] ≤ Ebin [f(W )] = Ebin[

n

W + 1
;W > 0] + n(1− p)n

Thus we gain an extra (small) n(1− p)n term to bound I, but this term is more than offset
by the negative term n/(n+ 1)× (np+ 1)/p× (1− p)n and so we drop both.

To get the overall bound, sum the bounds for I and D. �

Remarks: As a side note, Serfling (1974) improves Hoeffding’s bound for sampling with-
out replacement, implying that the rate of the βs convergence is faster under complete
randomization than for Bernoulli.
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1 Toy Examples of Gain and Loss

In this section we provide a few small examples to demonstrate the potential for gain or loss
due to post-stratification. Each of the following scenarios specify a particular collection of
potential outcomes, and Table 1 shows the resulting variances of the unadjusted estimator
and post-stratified estimator (both conditioned on D). In all cases we assume complete
randomization with 100p% units treated, with p as stated on the table. Table 1 also shows
the variance if the randomization were done via blocking.

We plug the parameters defined by the stated population into the variance formulas
presented in the main paper. We numerically compute the βs by conducting the described
randomization 50, 000 times and computing the mean βs for those randomizations where all
strata estimators were defined (i.e., we condition on D). The results on Table 1 are exact up
to the uncertainty in computing the βs. Bernoulli randomization gives near-identical results
(since the β’s are near identical). Directly estimating variance with a monte-carlo of point
estimates also gives identical results up to sampling error, further validating the formula as
correct.

variances % gain/loss
n K p PD τ τ̂ps τ̂sd blk blk:ps sw:ps sw:blk

I.A 40 4 0.50 99.9% 1.00 1.01 1.36 0.92 -7% 26% 33%
I.B 40 4 0.50 99.9% 1.00 1.01 0.85 0.92 -11% -20% -8%
I.C 40 4 0.30 93.7% 1.00 1.28 1.62 1.09 -12% 21% 33%
I.D 40 4 0.50 99.9% 1.00 1.01 2.24 0.92 -4% 55% 59%
I.E 40 4 0.50 99.9% 1.00 1.01 0.91 0.92 -10% -11% -1%

II.A 100 4 0.50 99.9% 1.91 0.39 0.63 0.37 -3% 39% 42%
II.B 100 4 0.30 97.2% 1.91 0.52 0.80 0.47 -5% 35% 41%

III.A 200 2 0.50 100% 0.94 0.24 0.30 0.24 0% 21% 21%
III.B 200 5 0.50 100% 0.94 0.21 0.30 0.21 -2% 28% 30%
III.C 200 10 0.50 100% 0.94 0.22 0.30 0.21 -4% 25% 29%
III.D 200 20 0.50 97% 0.94 0.24 0.30 0.21 -10% 20% 30%
III.E 200 25 0.50 84.4% 0.94 0.25 0.30 0.21 -13% 18% 30%
IV.A 200 2 0.50 100% 0.94 0.30 0.30 0.30 -1% 0% 0%
IV.B 200 5 0.50 100% 0.94 0.31 0.30 0.30 -2% -2% 0%
IV.C 200 10 0.50 100% 0.94 0.32 0.30 0.30 -5% -7% -2%
IV.D 200 20 0.50 97% 0.94 0.35 0.30 0.31 -14% -17% -3%
IV.E 200 25 0.50 84.4% 0.94 0.37 0.30 0.31 -19% -23% -4%
V.A 100 4 0.50 99.9% 1.80 0.32 0.55 0.30 -4% 42% 45%
V.B 200 4 0.50 100% 1.80 0.15 0.28 0.15 -2% 45% 47%
V.C 400 4 0.50 100% 1.80 0.07 0.14 0.07 -1% 47% 47%
V.D 800 4 0.50 100% 1.80 0.04 0.07 0.04 0% 47% 48%

Table 1. Variances of Estimators for Several Scenarios. K is the number of strata. PD is the probability
of τ̂ps being defined, estimated by simulation. τ is actual SATE. The percentages are calculated as 100%×
∆/Var[τ̂sd] with ∆ being the specified difference between variances.
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The families of scenarios are as follows:

I) We first consider a simple experiment with four strata, A, B, C, and D, with 10 units
each.

A) In the first scenario, the units in strata B,C and D are replicates of A shifted up by
+2, +4, and +6, respectively. There is a constant treatment effect of +1. There is
substantial between-strata variation, and therefore post-stratification is beneficial.
The left plot in Figure 1 displays the relationship between potential outcomes and
strata. This is the idealized constant-treatment effect situation where stratification
separates units of different types.

B) As Scenario I.A, but now the units in B, C, and D are simple replicates of A’s units
not shifted. There is no difference between strata and so we see the full price paid
by spurious post-stratification. It is easy in this small experiment for a random
imbalance to occur. An imbalance overweights some of the units, making it easier
to reach extreme values for estimated treatment effect. This results in a larger
variance. In this scenario blocking is also a poor choice, incurring a small cost.

C) As Scenario I.A, but with probability of treatment p = 0.3. The small propor-
tion treated makes it easier to have very few units estimating the average treat-
ment effect in a stratum (or overall). All estimators’ variances increase, but post-
stratification still comes out ahead of simple difference.

D) Now we have differing treatment effects of −3, 0,+2, and +5 for the four strata.
We no longer have an overall constant treatment effect: different strata respond to
treatment differently. Here the between-strata correlation of potential outcomes is
near 1.00. This makes post-stratification work very well.

E) A reverse of Scenario 1.D, we now have differing treatment effects of +5,+2, 0,−3
for the four strata. The trend of the group means is opposite to the trend of
outcomes within groups, which causes problems. The between-strata correlation
of potential outcomes is −0.95. See right plot on Figure 1. The between-strata
term is small due to this negative correlation. Negative correlations are good for
randomization because it means that if a randomly high unit is put into treatment,
a randomly high unit will probably be put into control as well to compensate. Post-
stratification does not take advantage of this, and thus does more poorly than the
unadjusted estimator, which does. Blocking also does not fair well in this case for
the same reasons.

In all the above, which are for a small-sized experiment, post-stratification is somewhat
close to blocking.

II) A slightly more complex experiment with unequal strata sizes. A has 60 units, B has
15, C has 15 and D has 10. We drew the yk(0) for A from a N(5, 5) population, B from
a N(3, 10), C from a N(7, 15) and D from a N(3, 15), where N(µ, σ2) denotes a normal
distribution with mean µ and variance σ2. The treatment effects for all units, drawn
from a unif(−1, 5) distribution, were added to the control outcomes. The presented
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Figure 1. From left to right, the potential outcomes for scenarios I.A, I.D, and I.E. Strata membership on
the plots are denoted A through D. “X” denotes strata means.

results are the variances of the estimators under different randomizations of a single
sample drawn from this described population.

A) Equal treatment proportions of p = 0.5. Post-stratification helps. It is also close
to blocking.

B) p = 0.3. The efficacy declines slightly due to the increased chance of imbalance.
Blocking does not suffer as much.

III) A set of experiments with a continuous covariate z evenly spaced on the interval [0, 100]
which we then partition into K strata of equal sizes. We vary K to see the impact of
finer stratification. The control outcome for unit i is distributed as yi(0) ∼ N(

√
zi, 9)

and the treatment outcome as yi(1) ∼ N(yi(0) + 1, 1). About 5 strata seems ideal
although even two strata is far better than doing nothing. Too many strata and we see
less benefit, plus a large increase in the chance of an undefined estimator.

IV) As III, but now z is useless. We generate this set by permuting the observed z from
III, breaking any connection between the covariate and the outcomes. τ̂sd is completely
unaffected. As the number of strata increase, things worsen for post-stratification due
to the increased chance of an accidental imbalance giving a single unit a great deal of
weight. Blocking also suffers, but not by nearly as much.

V) In this set of experiments, the set-up being the same as for Experiment II, we first
generated an initial set of data, and then replicated the units within the strata to
increase n. The number of strata is thus held constant and the treatment effect,
covariances and variances for subsequent experiments remain essentially unchanged.
As n grows, the percentage increase in variance of τ̂ps over blocking converges to 0 at
rate 1/n, and thus the percentage gain over τ̂sd converges to a fixed relative improvement
in precision over the unadjusted estimate.
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Discussion. Generally speaking, post-stratification is similar to blocking in terms of effi-
ciency. The more strata, however, the worse this comparison becomes due to the increased
chance of severe imbalance with consequential increase high uncertainty in the stratum-level
estimates. Post-stratification’s overall efficacy depends on how much larger the between-
stratum variation is compared to the penalty paid by giving some observations greater weight
due to random assignment imbalance. Having many strata is generally not helpful and can
be harmful if b is not prognostic. A moderate number of strata seems to offer protection
from this: compare K = 5 for scenarios III and IV.

1.1 Examining Conditional Variance

To illustrate how the variance of the estimators conditioned on the split W varies, we re-
peatedly conduct a randomization for a specific sample and calculate the conditional MSE
for both estimators given the generated split as shown in the latter half of Section 7 of the
main paper. These simulations demonstrate that if b is indeed prognostic, then the MSE
of τ̂ps is far lower than that of τ̂sd, and this difference increases with degree of imbalance.
However, if b is not prognostic, then the reverse trend is evident. The post-stratified esti-
mator does worse in the very circumstance when people might use it: to adjust for a seen
imbalance in the randomization. It is not necessarily beneficial to adjust—the variable used
for adjustment must be selected with care.

The left side of Figure 2 shows 5000 such calculations for Scenario III.B, presented above.
With low imbalance, the variance of τ̂ps is even smaller than the unconditional formula would
suggest. But as imbalance deteriorates, the variance of τ̂ps increases.

Compared to τ̂ps, the simple-difference estimator τ̂sd is vulnerable to poor splits. Gener-
ally, high imbalance means high conditional MSE. This is due to the bias term which can
get exceedingly large if there is imbalance between different heterogeneous strata. We see a
similar trend to the analogous PAC-Man example in the primary paper.

If b is not prognostic, however, the story changes. The experimental units in Scenario
IV.B, shown on right of Figure 2, are the same as for Scenario III.B, but the elements of
the covariate vector b have been shuffled to break b’s prognostic ability. Because the units
are the same, the unconditional variance of τ̂sd is the same as well. Because b is no longer
prognostic, post-stratification does not help, as illustrated by the elevated unconditional and
conditional trend lines. The post-stratified estimator still worsens with greater imbalance as
it did before because the cost of imbalance comes from the number of observations in the
treatment and control groups, something unrelated to b. The simple-difference estimator,
however, often can even improve with large imbalance. This is due to imbalance ensuring
a greater comparability of treatment and control units—if it were known that b was not
connected to the potential outcomes then it would actually be most ideal to treat all of some
strata and none of the others.

In other scenarios (not shown) these trends are repeated. Furthermore, when there are
few strata, the imbalance tends to be low (e.g., Scenarios I and II, or III with small K)
with a heavily right skewed distribution of conditional variance—most of the time there
is a good balance and low conditional variance, but there is a low chance of a bad split
and a high conditional variance. In such circumstances, there is very a good chance that
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the conditional variance of a post-stratified experiment is even closer to its corresponding
blocked experiment than one would initially expect from Equation 12 in the main document.
Also in such circumstances the pattern of the MSE of τ̂sd worsening for prognostic b and
improving for unrelated b as imbalance increases is even more apparent.

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

M
S

E

ps

sd

sd
ps

5 10 15 20
imbalanceImbalance

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

M
S

E

ps

sd

sd
ps

5 10 15 20
imbalanceImbalance

Figure 2. Conditional Variance of Scenario III.D (left) and Scenario IV.D (right). Points indicate the
conditional MSE of τ̂ps and τ̂sd given various specific splits of W . x-axis is the imbalance score for the split.
Curved dashed lines interpolate point clouds. Horizontal dashed lines mark unconditional variances for the
two estimators. The curves at bottom are the densities of the imbalance statistic.
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