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Abstract

In recent years, there has been a burst of innovative work on meth-
ods for estimating causal effects using observational data. Much of this
work has extended and brought a renewed focus on old approaches such
as matching, which is the focus of this review. The new developments
highlight an old tension in the social sciences: a focus on research design
versus a focus on quantitative models. This realization, along with the
renewed interest in field experiments, has marked the return of foun-
dational questions as opposed to a fascination with the latest estimator.
I use studies of get-out-the-vote interventions to exemplify this devel-
opment. Without an experiment, natural experiment, a discontinuity,
or some other strong design, no amount of econometric or statistical
modeling can make the move from correlation to causation persuasive.
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INTRODUCTION

Although the quantitative turn in the search for
causal inferences is more than a century old
in the social sciences, in recent years there has
been a renewed interest in the problems associ-
ated with making causal inferences using such
methods. These recent developments highlight
tensions in the quantitative tradition that have
been present from the beginning. There are a
number of conflicting approaches, which over-
lap but have important distinctions. I focus here
on three of them: the experimental, the model-
based, and the design-based.

The first is the use of randomized experi-
ments, which in political science may go back to
Gosnell (1927).! Whether Gosnell randomized
or not, Eldersveld (1956) certainly did when he
conducted a randomized field experiment to
study the effectiveness of canvassing by mail,
telephone, and house-to-house visits on voter
mobilization. But even with randomization,
there is ample disagreement and confu-
sion about exactly how such data should be
analyzed—for example, is adjustment by mul-
tivariate regression unbiased? There are also
concerns about external validity and whether
experiments can be used to answer “interesting”
or “important” questions. This latter concern
appears to be common among social scientists
and is sometimes harshly put. One early and
suspicious reviewer of experimental methods
in the social sciences recalled the words of
Horace: “Parturiunt montes, nascetur ridiculus
mus”  (Mueller 1945).> For observational
data analysis, however, the disagreements are
sharper.

!Gosnell may not have actually used randomization (Green
& Gerber 2002). His 1924 get-out-the-vote experiment,
described in his 1927 book, was conducted one year be-
fore Fisher’s 1925 book and 11 years before Fisher’s famous
1935 book on experimental design. Therefore, unsurpris-
ingly, Gosnell’s terminology is nonstandard and leads to some
uncertainty about exactly what was done. A definitive an-
swer requires a close examination of Gosnell’s papers at the
University of Chicago.

2“The mountains are in labor, a ridiculous mouse will be
brought forth,” from Horace’s, Epistles, Book 11, Ars Poetica
(The Art of Poetry). Horace is observing that some poets
make great promises that result in little.
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By far the dominant method of making
causal inferences in the quantitative social
sciences is model-based, and the most popular
model is multivariate regression. This tradition
is also surprisingly old; the first use of regres-
sion to estimate treatment effects (as opposed
to simply fitting a line through data) was Yule’s
(1899) investigation into the causes of changes
in pauperism in England. By that time the
understanding of regression had evolved from
what Stigler (1990) calls the Gauss-Laplace
synthesis. The third tradition focuses on design.
Examples abound, but they can be broadly cat-
egorized as natural experiments or regression-
discontinuity (RD) designs. They share in
common an assumption that found data, not
part of an actual field experiment, have some
“as if random” component: that the assignment
to treatment can be regarded as if it were ran-
dom, or can be so treated after some covariate
adjustment. From the beginning, some natural
experiments were analyzed as if they were
actual experiments (e.g., difference of means),
others by matching methods (e.g., Chapin
1938), and yet others—many, many others—by
instrumental variables (e.g., Yule 1899). [For an
interesting note on who invented instrumental
variable regression, see Stock & Trebbi (2003).]
A central criticism of natural experiments is
that they are not randomized experiments. In
most cases, the “as if random” assumption is
implausible (for reviews see Dunning 2008 and
Rosenzweig & Wolpin 2000).

Regression-discontinuity was first proposed
by Thistlethwaite & Campbell (1960). They
proposed RD as an alternative to what they
called “ex post facto experiments,” or what we
today would call natural experiments analyzed
by matching methods. More specifically, they
proposed RD as an alternative to matching
methods and other “as if” (conditionally) ran-
dom experiments outlined by Chapin (1938)
and Greenwood (1945), where the assignment
mechanism is not well understood. In the case
of RD, the researcher finds a sharp breakpoint
that makes seemingly random distinctions be-
tween units that receive treatment and those
that do not.
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Where does matching fit in? As we shall see,
it depends on how it is used.

One of the innovative intellectual devel-
opments over the past few years has been to
unify all of these methods into a common
mathematical and conceptual language, that
of the Neyman-Rubin model (Neyman 1990
[1923], Rubin 1974). Although randomized ex-
periments and matching estimators have long
been tied to the model, recently instrumen-
tal variables (Angrist et al. 1996) and RD (Lee
2008) have also been so tied. This leads to an
interesting unity of thought that makes clear
that the Neyman-Rubin model is the core of
the causal enterprise, and that the various meth-
ods and estimators consistent with it, although
practically important, are of secondary interest.
These are fighting words, because all of these
techniques, particularly the clearly algorithmic
ones such as matching, can be used without any
ties to the Neyman-Rubin model or causality.
In such cases, matching becomes nothing more
than a nonparametric estimator, a method to
be considered alongside CART (Breiman et al.
1984), BART (Chipman etal. 2006), kernel esti-
mation, and a host of others. Matching becomes
simply a way to lessen model dependence, not a
method for estimating causal effects per se. For
causal inference, issues of design are of utmost
importance; a lot more is needed than just an
algorithm. Like other methods, matching algo-
rithms can always be used, and they usually are,
even when design issues are ignored in order to
obtain a nonparametric estimate from the data.
Of course, in such cases, what exactly has been
estimated is unclear.

The Neyman-Rubin model has radical im-
plications for work in the social sciences given
current practices. According to this framework,
much of the quantitative work that claims to be
causal isnotwell posed. The questions asked are
too vague, and the design is hopelessly compro-
mised by, for example, conditioning on post-
treatment variables (Cox 1958, Section 4.2;
Rosenbaum 2002, pp. 73-74).

The radical import of the Neyman-Rubin
model may be highlighted by using it to deter-
mine how regression estimators behave when

fitted to data from randomized experiments.
Randomization does not justify the regression
assumptions (Freedman 2008b,c). Without ad-
ditional assumptions, multiple regression is not
unbiased. The variance estimates from mul-
tiple regression may be arbitrarily too large
or too small, even asymptotically. And for lo-
gistic regression, matters only become worse
(Freedman 2008d). These are fearful conclu-
sions. These pathologies occur even with ran-
domization, which is supposed to be the easy
case.

Although the Neyman-Rubin model is cur-
rently the most prominent, and I focus on it
in this review, there have obviously been many
other attempts to understand causal inference
(reviewed by Brady 2008). An alternative whose
prominence has been growing in recent years is
Pearl’s (2000) work on nonparametric structural
equations models (for a critique see Freedman
2004). Pearl’s approach is a modern reincarna-
tion of an old enterprise that has a rich his-
tory, including foundational work on causality
in systems of structural equations by the polit-
ical scientist Herbert Simon (1953). Haavelmo
(1943) was the first to precisely examine issues
of causality in the context of linear structural
equations with random errors.

As for matching itself, there is no consensus
on how exactly matching ought to be done, how
to measure the success of the matching pro-
cedure, and whether or not matching estima-
tors are sufficiently robust to misspecification
so as to be useful in practice (Heckman et al.
1998). To illuminate issues of general interest,
I review a prominent exchange in the politi-
cal science literature involving a set of get-out-
the-vote (GOTV) field experiments and the use
of matching estimators (Arceneaux et al. 2006;
Gerber & Green 2000, 2005; Hansen & Bowers
2009; Imai 2005).

The matching literature is growing rapidly,
so it is impossible to summarize it in a brief
review. I focus on design issues more than
the technical details of exactly how match-
ing should be done, although the basics
are reviewed. Imbens & Wooldridge (2008)
have provided an excellent review of recent
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developments in methods for program eval-
uation. For additional reviews of the match-
ing literature, see Morgan & Harding (2006),
Morgan & Winship (2007), Rosenbaum (2005),
and Rubin (2006).

THE NEYMAN-RUBIN
CAUSAL MODEL

The Neyman-Rubin framework has become
increasingly popular in many fields, in-
cluding statistics (Holland 1986; Rosenbaum
2002; Rubin 1974, 2006), medicine (Christakis
& Iwashyna 2003, Rubin 1997), economics
(Abadie & Imbens 2006a; Dehejia & Wahba
2002, 1999; Galiani et al. 2005), politi-
cal science (Bowers & Hansen 2005, Imai
2005, Sekhon 2004), sociology (Diprete &
Engelhardt 2004, Morgan & Harding 2006,
Smith 1997, Winship & Morgan 1999), and
even law (Rubin 2001). The framework orig-
inated with Neyman’s (1990 [1923]) model,
which is nonparametric for a finite number
of treatments where each unit has two poten-
tial outcomes for each treatment—one if the
unit is treated and the other if untreated. A
causal effectis defined as the difference between
the two potential outcomes, but only one of
the two potential outcomes is observed. Rubin
(1974, 2006) developed the model into a gen-
eral framework for causal inference with im-
plications for observational research. Holland
(1986) wrote an influential review article that
highlighted some of the philosophical implica-
tions of the framework. Consequently, instead
of the “Neyman-Rubin model,” the model is
often simply called the Rubin causal model
(e.g.,Holland 1986) or sometimes the Neyman-
Rubin-Holland model (e.g., Brady 2008)
or the Neyman-Holland-Rubin model (e.g.,
Freedman 2006).

The intellectual history of the Neyman-
Rubin model is the subject of some contro-
versy (e.g., Freedman 2006, Rubin 1990, Speed
1990). Neyman’s 1923 article never mentions
the random assignment of treatments. Instead,
the original motivation was an urn model,
and the explicit suggestion to use the urn model
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to physically assign treatments is absent from
the paper (Speed 1990). An urn model is based
on an idealized thought experiment in which
colored balls are drawn randomly from an urn.
Using the model does not imply that treat-
ment should be physically assigned in a ran-
dom fashion. It was left to R.A. Fisher in the
1920s and 1930s to note the importance of the
physical act of randomization in experiments.
Fisher first did this in the context of experi-
mental design in his 1925 book, expanded on
the issue in a 1926 article for agricultural re-
searchers, and developed it more fully and for a
broader audience in his 1935 book The Design of
Experiments [for more on Fisher’s role in the ad-
vocacy of randomization see Armitage (2003),
Hall (2007), Preece (1990)]. As Reid (1982,
p. 45) notes of Neyman: “On one occasion,
when someone perceived him as anticipating
the English statistician R.A. Fisher in the use of
randomization, he objected strenuously:

‘I treated theoretically an unrestrictedly ran-
domized agricultural experiment and the ran-
domization was considered as a prerequisite
to probabilistic treatment of the results. This
is not the same as the recognition that with-
out randomization an experiment has little
value irrespective of the subsequent treatment.
The latter point is due to Fisher, and I con-
sider it as one of the most valuable of Fisher’s

achievements.”

This gap between Neyman and Fisher
points to the fact that there was something ab-
sent from the Neyman mathematical formu-
lation in 1923, which was added later, even
though the symbolic formulation was complete
in 1923. What those symbols 7eant changed.
And in these changes lies what is causal about
the Neyman-Rubin model—i.e., a focus on the
mechanism by which treatment is assigned.

The Neyman-Rubin model is more than just
the math of the original Neyman model. Ob-
viously, it does not rely on an urn-model
motivation for the observed potential

3 Also see Rubin (1990, p. 477).
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outcomes, but instead, for experiments, a
motivation based on the random assignment of
treatment. And for observational studies, one
relies on the assumption that the assignment of
treatment can be treated as if it were random. In
either case, the mechanism by which treatment
is assigned is of central importance. And the
realization that the primacy of the assignment
mechanism holds true for observational data
no less than for experimental is due to Rubin
(1974). This insight has been turned into a
motto: “No causation without manipulation”
(Holland 1986).

Although the original article was written
in Polish, Neyman’s work was known in the
English-speaking world (Reid 1982), and in
1938 Neyman moved from Poland to Berkeley.
It is thus unsurprising that the Neyman model
quickly became the standard way of describing
potential outcomes of randomized experiments
(e.g., Anscombe 1948; Kempthorne 1952,1955;
McCarthy 1939; Pitman 1937; Welch 1937).
The most complete discussion I know of
before Rubin’s work is Scheffé (1956). And a
simplified version of the model even appears in
an introductory textbook in the 1960s (Hodges
& Lehmann 1964, sec. 9.4).*

The basic setup of the Neyman model is very
simple. Let ¥;; denote the potential outcome
for unit 7 if the unit receives treatment, and
let ;o denote the potential outcome for unit
i in the control regime. The treatment effect
for observation 7 is defined by v; = Y;; — Y.
Causal inference is a missing data problem be-
cause Y;; and Yjq are never both observed. This
remains true regardless of the methodology
used to make inferential progress—regardless
of whether we use quantitative or qualitative
methods of inference. The fact remains that we
cannot observe both potential outcomes at the
same time.

Some assumptions have to be made to make
progress. The most compelling are offered by a

4The philosopher David Lewis (1973) is often cited for hy-
pothetical counterfactuals and causality, and it is sometimes
noted that he predated, by a year, Rubin (1974). The Neyman
model predates Lewis.

randomized experiment. Let 7; be a treatment
indicator: 1 when 7 is in the treatment regime
and 0 otherwise. The observed outcome for
observation 7 is then:

Y, =TY:+ (1 = T)Yo. L.

Note that in contrast to the usual regression as-
sumptions, the potential outcomes, Y;o and ¥y,
are fixed quantities and not random variables,
and that ¥; is only random because of treatment
assignment.

Extensions to the case of multiple discrete
treatment are straightforward (e.g., Imbens
2000; Rosenbaum 2002, pp. 300-2). Extensions
to the continuous case are possible but lose the
nonparametric nature of the Neyman model
(see Imai & van Dyk 2004).

Experimental Data

In principle, if assignment to treatment is
randomized, causal inference is straightforward
because the two groups are drawn from the
same population by construction, and treat-
ment assignment is independent of all baseline
variables. The distributions of both observed
and unobserved variables between treatment
and control groups are equal—i.e., the distri-
butions are balanced. This occurs with arbitrar-
ily high probability as the sample size grows
large.

Treatment assignment is independent of ¥y
and Y1—i.e., {¥io, i1 AL Y;}, where 1L denotes
independence. In other words, the distributions
of both of the potential outcomes (Yo, ¥;) are
the same for treated (7'= 1) and control (T" = 0).
Hence, forj = 0, 1,

EQ,|T =1) = E(XIT =0, 2.

where the expectation is taken over the distri-
bution of treatment assignments. This equa-
tion states that the distributions of potential
outcomes in treatment and control groups are
the same in expectation. But for treatment
observations one observes T;; and for con-
trol observations Tjy. Treatment status filters
which of the two potential outcomes we observe
(Equation 1) but does not change them.
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The average treatment effect (ATE) is de-
fined to be:

t=EWu|T; =1) - E|T; = 0)
=EY|T =1) - EX|T; = 0). 3.

Equation 3 can be estimated consistently by
simply taking the difference between two sam-
ple means because randomization ensures that
the potential outcomes in treatment and con-
trol groups have the same distributions in ex-
pectation. This implies that randomization en-
sures that assignment to treatment will not
be associated with any potentially confounding
variable—i.e., with any pretreatment variable
associated with the outcome.

One of the assumptions which randomiza-
tion by itself does not justify is that “the ob-
servation on one unit should be unaffected by
the particular assignment of treatments to the
other units” (Cox 1958, sec. 2.4). “No inter-
ference between units” is often called the sta-
ble unit treatment value assumption (SUTVA).
SUTVA implies that the potential outcomes for
a given unit do not vary with the treatments as-
signed to any other unit, and that there are not
different versions of treatment (Rubin 1978).
SUTVA is a complicated assumption that is all
too often ignored.

Brady (2008) describes a randomized wel-
fare experiment in California where SUTVA
is violated. In the experiment, teenage girls in
the treatment group had their welfare checks
reduced if they failed to obtain passing grades
in school. Girls in the control group did not
face the risk of reduced payments. However,
some girls in the control group thought that
they were in the treatment group, probably be-
cause they knew girls in that group (Mauldon
et al. 2000). Therefore, the experiment proba-
bly underestimated the effect of the treatment.

Some  researchers think
SUTVA is another term for the assumption

erroneously

usually made in regression models that the
disturbances of different observations are
independent of one another. A hint of the
problem can be seen by noting that ordinary
least squares (OLS) is still unbiased under the
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usual assumptions even if multiple draws from
the disturbance are not independent of each
other. When SUTVA is violated, however, an
experiment will not generally yield unbiased
estimates (Cox 1958). In the usual regression
setup, the correct specification assumption
deals with SUTVA violations: It is implicitly
assumed that if there are SUT VA violations, we
have the correct model for them so that condi-
tional independence holds—i.e., E(e|X) = 0,
where € is the regression disturbance and X
represents the observed variables.

Even with randomization, the usual OLS
regression assumptions are not satisfied. In-
deed, without further assumptions, the mul-
tiple regression estimator is biased. Asymp-
totically the bias vanishes in some cases but
need not with cluster randomized experiments
(Middleton 2008). The regression standard er-
rors can be severely biased, and the multiple re-
gression estimator may have higher asymptotic
variance than simply estimating Equation 3 (for
details see Freedman 2008b,c). Intuitively, the
problem is that generally, even with random-
ization, the treatment indicator and the distur-
bance will be strongly correlated. Randomiza-
tion does not imply, as OLS assumes, a linear
additive treatment effect where the coefficients
are constantacross units. Random effects do not
solve the problem. Linear additivity remains,
and the heterogeneity of the causal effect must
be modeled. But the model may be wrong. For
example, the effect may not vary normally as
is commonly assumed, and it may be strongly
related to other variables in the model. Re-
searchers should be extremely cautious about
using multiple regression to adjust experimen-
tal data. Unfortunately, there is a tendency to
use it freely. This is yet another sign, as if one
more were needed, of how ingrained the regres-
sion model is in our quantitative practice.

Unlike multiple regression, random assign-
ment of treatment is sufficient for simple bi-
variate regression to be an unbiased estimator
for Equation 3. The simple regression estima-
tor is obtained by running a regression of the
observed response I on the assignment variable
T with an intercept. The standard errors of this
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estimator are, however, generally incorrect be-
cause the standard regression formulas assume
homoscedasticity. Alternative variance estima-
tors that adjust for heteroscedasticity may be
used. An obvious alternative is to use the vari-

B
ne?

ance estimator Zf’r + 2=, where ¥, is the sample
variance for the treatment observations, 7, is
the number of treatment observations, and the
subscript ¢ denotes analogous quantities for the
control group.

The only stochastic thing in the Neyman-
Rubin framework is the assignment to treat-
ment. The potential outcomes are fixed. This is
exactly the opposite of many econometric treat-
ments, where all of the regressors (including
the treatment indicator) are considered to be
fixed, and the response variable Y 'is considered
to be a random variable with a given distribu-
tion. None of thatis implied by randomization,
and indeed randomization explicitly contradicts
it because one of the regressors (the treatment
indicator) is explicitly random. Adding to the
confusion is the tendency of some texts to refer
to the fixed-regressors design as an experiment
when that cannot possibly be the case.

In many modern treatments of OLS, X is
stochastic, but that raises additional questions.
Except for the randomly assigned treatment in-
dicator, what makes the X covariates random?
And if the data are a random sample (so, clearly,
Xisrandom), then there are two distinct sources
of randomness: (#) treatment assignment;
(b) sampling from a population. These are dis-
tinct entities, and one could be interested in
either sample or population estimates—e.g.,
sample average treatment effects (SATE) or
population average treatment effects (PATE).
Sample estimates ignore the second source
of randomness, and the population estimates
take both into account. In the case of ran-
dom sampling, SATE generally has less vari-
ance than PATE but certainly no more
(Imbens 2004). Without assumptions in addi-
tion to random assignment and random sam-
pling, one is not led to the usual regression vari-
ance formulas.

A parallel argument holds if one wants to
consider the potential outcomes to be random

and not fixed. What are the source and model
of this randomness? Without additional infor-
mation, it is most natural to consider that the
potential outcomes are fixed because in a ran-
domized experiment the only aspect that we
know is random is treatment assignment. In the
case of random potential outcomes, one can al-
ways conduct an analysis conditional on the data
at hand, such as SATE, which ignores the sec-
ond source of randomness. Of course, the con-
ditional inference (e.g., SATE) may lead to a
different inference than the unconditional in-
ference. Without assumptions (such as random
sampling), the sample contains no information
about the PATE beyond the SATE. Note that
if the potential outcomes are random, but we
condition on the observed potential outcomes
and so treat them as fixed, questions about the
role of conditioning and inference arise, which
go back to Neyman and Fisher. If the random
error is independent of treatment assignment,
this situation is analogous to the case of a2 x 2
table where one margin is fixed and we analyze
the data as if both margins are fixed (Lehmann
1993; Rosenbaum 2005, sec. 2.5-2.9).

Even in an experimental setup, much can
go wrong that requires statistical adjustment
(e.g., Barnard et al. 2003). A common problem
is compliance. For example, a person assigned
to treatment may refuse it. This person is said
to have crossed over from treatment to control.
A person assigned to control may find some way
to receive treatment nevertheless, which is an-
other form of crossover.

When there are compliance
Equation 3 defines the intention-to-treat
(ITT) estimand. Although the concept of ITT
dates earlier, the phrase probably first appeared
in print in 1961 (Hill 1961, p. 259). Moving
beyond the I'TT to estimate the effect of treat-
ment on the units that actually received it can
be difficult. I'TT measures the effect of assign-
ment rather than treatment itself, and estimates

issues,

of IT'T are unbiased even with crossover. The
obvious benefit is that I'TT avoids bias by
taking advantage of the experimental design.
The simplest compliance problem is one in
which every unit assigned to control accepts
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control, but some units assigned to treatment
decline treatment and follow the control pro-
tocol instead. This is called single crossover. In
this case, the Neyman-Rubin model can easily
handle the issue. Progress is made by assum-
ing that there are two types of units: compliers
and never-treat. A complier follows her assign-
ment to either treatment or control. Compli-
ers have two potential outcomes, which are ob-
served as in Equation 1. However, a never-treat
unit is assumed to have only one response, and
this response is observed regardless of whether
the unit is randomized to receive treatment or
control.

With this simple model in place, we have
five different parameters:

B the proportion of compliers in the exper-

imental population (c)

® the average response of compliers
assigned to treatment (J7)
® the average response of compliers

assigned to control (C)

®  the difference between W and C, which
is the average effect of treatment on the
compliers (R)

B the average response of never-treat units
assigned to control (Z)

All five of these parameters can be estimated.
o can be estimated by calculating the propor-
tion of compliers observed in the treatment
group. Because of randomization, this propor-
tion is an unbiased estimate of the proportion
of compliers in control as well. The average re-
sponse of compliers to treatment, W, is simply
the average response of compliers in the treat-
ment group. And Z, the average response of
never-treat units to control, is estimated by the
average response among units in the treatment
group who refused treatment.

This leaves C and R. For R, note that the
control group contains a mix of compliers and
never-treat units. We do not know the type of
any given unit in control, but we know (in ex-
pectation) the proportion of each there must be
in control because we can estimate this propor-
tion in the treated group.

Recall that « denotes the proportion of
compliers in the experimental population, and
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assume « > 0. Under the model, the proportion
of never-treat units must be 1 — . Denote the
average observed responses in treatment and
control by Y’, ¥¢; these are sample quantities
that are directly observed. Since the treatment
and control groups are exchangeable because of
random assignment,

E¥)=aC+(1—-a)Z

Therefore,
EY)—(1—-a)Z

o

C =
An obvious estimator for C is

7 —(1-a)Z

o

é:

Then the only remaining quantity is R, the av-
erage effect of treatment on the compliers—i.e.,
the effect of treatment on the treated (ETT).
"This can be estimated by

R el &) .

o

Note how simple and intuitive Equation 4 is.
The estimated average effect of treatment on
the treated is calculated by dividing the I'TT
estimator by the compliance rate. Because this
rate is less than or equal to 1 and, by assumption,
above 0, ETT will be greater than or equal to
I'TT, and both will have the same sign.

Equation 4 is the same as two-stage least
squares where the instrument is the random
assignment to treatment. The canonical ci-
tation for this estimator is Angrist et al.
(1996); they provide a more general deriva-
tion. The discussion above implicitly satisfies
the assumptions they outline. For other dis-
cussions see Angrist & Imbens (1994), Bloom
(1984), Freedman (2006), and Sommer & Zeger
(1991).

When the compliance problem has a more
complicated structure (e.g., when there is two-
way crossover), it is difficult to make progress
without making strong structural assumptions
(Freedman 2006). We return to the issue of
compliance in a later section, when we discuss
the get-out-the-vote controversy.
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Observational Data

In an observational setting, unless something
special is done, treatment and nontreatment
groups are almost never balanced because the
two groups are not ordinarily drawn from the
same population. Thus, a common quantity of
interest is the average treatment effect for the
treated (ATT):

t(T=1)=EYull; =1)- EQj|T; =1), 5.

where the expectation is taken over the distribu-
tion of treatment assignments. Equation 5 can-
not be directly estimated because Y is not ob-
served for the treated. Progress can be made by
assuming that selection for treatment depends
on observable covariates denoted by X. Then,
one can assume that conditional on X, treat-
ment assignment is unconfounded. In other
words, the conditional distributions of the po-
tential outcomes are the same for treated and
control: {¥p, V7 L T} X.

Following Rosenbaum & Rubin (1983), we
say that treatment assignment is strongly ig-
norable given a vector of covariates X if uncon-
foundedness and common overlap hold:

o, L T}HX
0<Pr(T = 1|X)<1

for all X. Heckman et al. (1998) show that for
ATT, the unconfoundedness assumption can
be weakened to conditional mean indepen-
dence between the potential outcomes Yj; and
the treatment indicator 7; given X (also see
Abadie & Imbens 2006a).

The common overlap assumption ensures
that some observed value of X does not deter-
ministically result in a given observation being
assigned to treatment or control. If such deter-
ministic treatment assignments were to occur,
it would not be possible to identify the treat-
ment effect. For example, if women were never
treated and men always treated, it would not
be possible to obtain an unbiased estimate of
the average treatment effect (ATE) without an

additional assumption.’

SWe could assume that sex is independent of the potential
outcomes. Women in the control group could then be valid

Given strong ignorability, following Rubin
(1974, 1977) we obtain

E(Y;1X. T = 1) = EY;|X,, T, =0). 6.

Equation 6 is the observational equivalent of
Equation 2. Equation 6 is a formalization of
the “asif random” assumption made in observa-
tional studies. Once some observable variables
have been conditioned upon, analysis can con-
tinue as if treatment were randomly assigned.
A key goal is to obtain results for observational
data that were demonstrated to hold given ran-
dom assignment in the previous section.

By conditioning on observed covariates, X,
treatment and control groups are balanced—
i.e., the distributions of the potential outcomes
between treatment and control groups are the
same. When it comes to potential outcomes,
the only difference between the two groups is
the potential outcomes we observe, V; or 1%.
The ATE for the treated is estimated as

t(T'=1)= E{EX|Xi. T; = 1)
—EY|X, =0T =1}, 7.

where the outer expectation is taken over the
distribution of X;|(7; = 1), which is the distri-
bution of X in the treated group.

Note that the AT'T estimator is changing
how individual observations are weighted, and
that observations outside of common support
receive zero weights. That is, if some covariate
values are only observed for control observa-
tions, those observations will be irrelevant for
estimating AT'T and are effectively dropped.
Therefore, the overlap assumption for ATT
only requires that the support of X for the
treated observations be a subset of the support
of X for control observations. More generally,
one would also want to drop treatment obser-
vations if they have covariate values that do not
overlap with control observations (Crump et al.
2006). In such cases, it is unclear exactly what
estimand one is estimating because it is no
longer AT'T, as some treatment observations

counterfactuals for men in treatment given the V" of inter-
est. Such additional exclusion assumptions are not required
if strong ignorability holds.
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have been dropped along with some control
observations.

It is often jarring for people to hear that
observations are being dropped because of a
lack of covariate overlap. Our intuition against
dropping observations comes from what hap-
pens with experimental data, where homogene-
ity between treatmentand control is guaranteed
by randomization so a larger sample is obvi-
ously better than a smaller one. But with ob-
servational data, dropping observations that are
outside of common support not only reduces
bias but can also reduce the variance of our
estimates. This may be counterintuitive, but
note that our variance estimates are a function
of both sample size and unit heterogeneity—
e.g., in the regression case, of the sample vari-
ance of X and the mean square error. Drop-
ping observations outside of common support
and conditioning as in Equation 7 helps to im-
prove unit homogeneity and may actually re-
duce our variance estimates (Rosenbaum 2005).
Rosenbaum 2005 also shows that, with observa-
tional data, minimizing unit heterogeneity re-
duces both sampling variability and sensitivity
to unobserved bias. With less unit heterogene-
ity, larger unobserved biases need to exist to
explain away a given effect. And although in-
creasing the sample size reduces sampling vari-
ability, it does little to reduce concerns about
unobserved bias. Thus, maximizing unit homo-
geneity to the extent possible is an important
task for observational methods.

The key assumption being made here is
strong ignorability. Even thinking about this
assumption presupposes some rigor in the re-
search design. For example, is it clear what is
pre- and what is posttreatment? If not, one
cannot even form the relevant questions. The
most useful of those questions may be the one

SThere is a trade-off between having a smaller number
of more homogeneous observations and a larger number
of more heterogeneous observations. Whether dropping a
given observation actually increases the precision of the esti-
mate depends on how different this observation is from the
observations that remain and how sensitive the estimator is
to heterogeneity (see Rosenbaum 2005 for formal details).

Sekbon

suggested by Dorn (1953, p. 680), who pro-
posed that the designer of every observational
study should ask, “How would the study be con-
ducted if it were possible to do it by controlled
experimentation?” This clear question also ap-
pears in Cochran’s (1965) famous Royal Statis-
tical Society discussion paper on the planning of
observational studies of human populations.
Researchers in the tradition of the Neyman-
Rubin model routinely ask Dorn’s question of
themselves and their students. The question
forces the researcher to focus on a clear ma-
nipulation and then on the selection problem
at hand. Only then can one even begin to think
clearly about how plausible the strong ignora-
bility assumption may or may not be. Because
most researchers do not propose an answer to
this question, itis difficult to think clearly about
the underlying assumptions being made in most
applications in the social sciences because it
is not clear what the researcher is trying to
estimate.

For the moment, let us assume that the re-
searcher has a clear treatment of interest and
a set of confounders that may reasonably en-
sure conditional independence of treatment as-
signment. At that point, one needs to condition
on these confounders (denoted by X). But we
must remember that selection on observables is
a large concession, which should not be made
lightly. It is of far greater relevance than the fol-
lowing technical discussion on the best way to
condition on covariates.

In other words, the identification assump-
tion for both OLS and matching is the same: se-
lection on observables. Both also rely on the sta-
ble unit treatment value assumption (SUTVA)
and have similar restrictions on the use of post-
treatment variables. Despite their differences,
they have more in common than most applied
researchers in political science realize. There-
fore, the identification assumption—e.g., selec-
tion on observables—should receive more at-
tention than is often the case in the literature.
Authors, even when they have natural experi-
ments, spend insufficient effort justifying this
assumption [for a review and evaluation of a
number of natural experiments and their “as
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if random” assumptions, see Dunning (2008)].
Obviously, matching is nonparametric whereas
OLS is not. This is an important distinction be-
cause asymptotically matching does not make a
functional form assumption in addition to the
selection-of-observables assumption (Abadie &
Imbens 2006a). OLS, however, does make addi-
tional assumptions; it assumes linear additivity.

MATCHING METHODS

The most straightforward and nonparametric
way to condition on Xis to exactly match on the
covariates. This is an old approach, dating back
at least to Fechner (1966 [1860]), the father of
psychophysics. This approach is often impossi-
ble to implement in finite samples if the dimen-
sionality of X is large—i.e., exact matches are
not found in a given sample. And exact match-
ing is not possible to implement even asymptot-
ically if X contains continuous covariates. Thus,
in general, alternative methods must be used.

Various forms of matching have been used
for some time, for example (Chapin 1938,
Cochran 1953, Greenwood 1945). Two com-
mon approaches today are propensity score
matching (Rosenbaum & Rubin 1983) and
multivariate matching based on Mahalanobis
distance (Cochran & Rubin 1973; Rubin 1979,
1980).

Mahalanobis and Propensity
Score Matching

The most common method of multivariate
matching is based on Mahalanobis distance
(Cochran & Rubin 1973; Rubin 1979, 1980).
The Mahalanobis distance between any two
column vectors is

md(X., X,) = (X — X,)S™(X, — X)))2,

where S is the sample covariance matrix of X.
To estimate AT'T, one matches each treated
unit with the M closest control units, as de-
fined by this distance measure, 7zd(). Match-
ing with replacement results in the estima-
tor with the lowest conditional bias (Abadie &
Imbens 2006a). [Alternatively, one can use

optimal full matching (Hansen 2004, Rosen-
baum 1991), which may have lower variance.
But this decision is separate from the choice of a
distance metric.] If X consists of more than one
continuous variable, multivariate matching es-
timates contain a bias term that does not asymp-
totically go to zero at /n (Abadie & Imbens
2006a).

An alternative way to condition on X is
to match on the probability of assignment to
treatment, known as the propensity score.” As
one’s sample size grows large, matching on the
propensity score produces balance on the vector
of covariates X (Rosenbaum & Rubin 1983).

Given strong ignorability, Rosenbaum &
Rubin (1983) prove

t(T'=1) = E{E(Yj|e(X)). T; = 1)
—Eile(X), T; = 0)|T; = 1},

where the outer expectation is taken over the
distribution of ¢(X;)|(T; = 1). Under these as-
sumptions, the propensity score can be used to
provide an unbiased estimate of ATE as well.

Propensity score matching usually involves
matching each treated unit to the nearest con-
trol unit on the unidimensional metric of the
propensity score vector. [Optimal matching
might sometimes match treated units to non-
nearest control units in order to minimize
the overall distance (Hansen 2004, Rosenbaum
1991).] Because the propensity score is gen-
erally unknown, it must be estimated. If the
propensity score is estimated by logistic regres-
sion, as is typically the case, much is to be gained
by matching not on the predicted probabilities
(bounded between zero and one) but on the lin-
ear predictor: i = XA. Matching on the lin-
ear predictor avoids compression of propensity
scores near zero and one (Rosenbaum & Rubin
1985). Moreover, the linear predictor is often
more nearly normally distributed, which is of
some importance given the “equal percent bias
reduction” (EPBR) theoretical results discussed
below.

"The first estimator of treatment effects to be based on a
weighted function of the probability of treatment was the
Horvitz-Thompson statistic (Horvitz & Thompson 1952).
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EQUAL PERCENT BIAS REDUCTION

Affinely invariant matching methods, such as Mahalanobis met-
ric matching and propensity score matching (if the propen-
sity score is estimated by logistic regression), are equal
percent bias reducing if all of the covariates used have el-
lipsoidal distributions (Rubin & Thomas 1992)—e.g., distri-
butions such as the normal or z#—or if the covariates are
discriminant mixtures of proportional ellipsoidally symmetric
(DMPES) distributions (Rubin & Stuart 2006). Note that
DMPES defines a limited set of mixtures—in particular, count-
ably infinite mixtures of ellipsoidal distributions where (#) all
inner products are proportional and (4) the center of each con-
stituent ellipsoidal distribution is such thatall best linear discrim-
inants between any two components are also proportional.

To formally define EPBR, let Z be the expected value of X in
the matched control group. Then, as outlined by Rubin (1976a),
a matching procedure is EPBR if

EX|T=1)-Z=y{EX|T=1)— EX|T = 0)}

for a scalar 0 < y < 1. In other words, a matching method is
EPBR for X when the percent reduction in the biases of each of
the matching variables is the same. One obtains the same per-
cent reduction in bias for any linear function of X if and only if
the matching method is EPBR for X. Moreover, if a matching
method is not EPBR for X, the bias for some linear function of
X is increased even if all univariate covariate means are closer in
the matched data than in the unmatched (Rubin 1976a).

Mahalanobis distance and propensity score
matching can be combined in various ways
(Rubin 2001). Rosenbaum & Rubin (1985)
show that, in finite samples, it is useful to com-
bine the two matching methods because do-
ing so reduces covariate imbalance and mean
squared error in the causal estimate more effec-
tively than using either method alone. The im-
provements occur because the propensity score
is a balancing score only asymptotically. In fi-
nite samples, some covariate imbalances will
remain, which another matching method can

DMPES

distributions: help adjust.

discriminant mixtures Matching methods based on the propen-
of proportional _ sity score (estimated by logistic regression),
eulp?("d‘.’“y SYMMELC A lahalanobis distance, or a combination of the
distributions
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two have appealing theoretical properties if
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covariates have ellipsoidal distributions—e.g.,
distributions such as the normal or z. If the
covariates are so distributed, these methods
(more generally, affinely invariant matching
methods®) have the property of EPBR (Rubin
1976a,b; Rubin & Thomas 1992).° This prop-
erty, formally defined in the sidebar “Equal Per-
cent Bias Reduction,” ensures that matching
methods will reduce bias in all linear combi-
nations of the covariates. If a matching method
is not EPBR, then that method will, in general,
increase the bias for some linear function of the
covariates even if all univariate means are closer
in the matched data than the unmatched (Rubin
1976a).

A significant shortcoming of these common
matching methods is that they may (and in prac-
tice, frequently do) make balance worse across
measured potential confounders. These meth-
ods may make balance worse even if the distri-
bution of covariates is ellipsoidally symmetric,
because EPBR is a property that holds in ex-
pectation. That is, even if the covariates have
elliptic distributions, finite samples may not
conform to ellipticity, and hence Mahalanobis
distance may not be optimal because the ma-
trix used to scale the distances, the sample co-
variance matrix of X, may not be sufficient to
account for all of the differences between the
distributions of the covariates in X. In finite
samples, there may be more differences be-
tween the distributions of covariates than just
means and variances—e.g., the other moments
may differ as well. [On Mahalanobis distance
and distributional considerations, see Mitchell
& Krzanowski (1985, 1989).] Moreover, if
covariates are neither ellipsoidally symmetric
nor discriminant mixtures of proportional el-
lipsoidally symmetric (DMPES) distributions,
propensity score matching has good theoretical

8Affine invariance means that the matching output is invari-
ant to matching on X or an affine transformation of X.

9The EPBR results of Rubin & Thomas (1992) have been
extended by Rubin & Stuart (2006) to the case of discrimi-
nant mixtures of proportional ellipsoidally symmetric distri-
butions. This extension is important, but it is restricted to a
limited set of mixtures.
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properties only if the true propensity score
model is known with certainty and the sample
size is large.

The EPBR property itself is limited and not
always desirable. Consider a substantive prob-
lem in which it is known, based on theory, that
one covariate has a large nonlinear relationship
with the outcome while another does not—e.g.,
Y = X} + X;, where X > 1 and where both
Xj and X, have the same distribution. In such a
case, covariate imbalance in X; will be generally
more important than X, because the response
surface (i.e., the model of ') is more sensitive
to changes in X than X;.

Genetic Matching

Given these limitations, it may be desirable to
use a matching method that algorithmically im-
poses certain properties when the EPBR prop-
erty does not hold. One method that does this
while keeping the estimand constant is genetic
matching (GenMatch) (Diamond & Sekhon
2005, Sekhon 2009). GenMatch automatically
finds the set of matches that minimizes the dis-
crepancy between the distribution of potential
confounders in the treated and control groups.
That is, covariate balance is maximized. Gen-
Match is a generalization of propensity score
and Mahalanobis distance matching. It has been
used by a variety of researchers (e.g., Bonney
et al. 2007, Boyd et al. 2008, Eggers &
Hainmueller 2008, Gilligan & Sergenti 2008,
Gordon & Huber 2007, Heinrich 2007, Herron
& Wand 2007, Korkeamiki & Uuistalo 2009,
Lenz & Ladd 2006, Raessler & Rubin 2005,
Woo et al. 2008). The method uses a genetic
algorithm (Mebane & Sekhon 2009, Sekhon &
Mebane 1998) to optimize balance as much as
possible given the data. GenMatch is nonpara-
metric and does not depend on knowing or es-
timating the propensity score, but the method
is improved when a propensity score is incor-
porated. Diamond & Sekhon (2005) use this al-
gorithm to show that the long-running debate
between Dehejia & Wahba (1997, 1999, 2002;
Dehejia 2005) and Smith & Todd (2005a,b,
2001) is largely a result of the use of models that

do not produce good balance—even if some
of the models get close, by chance, to the ex-
perimental benchmark of interest. They show
that GenMatch is able to quickly find good
balance and to reliably recover the experimen-
tal benchmark. Sekhon & Grieve (2008) show
that for a clinical intervention of interest in the
matching literature, pulmonary artery catheter-
ization, applying GenMatch to an observational
study replicates the substantive results of a cor-
responding randomized controlled trial, unlike
the extant literature.

A difficult question all matching methods
must confront is how to measure covariate bal-
ance. Users of propensity score matching iter-
ate between tweaking the specification of their
propensity score model and then checking the
covariate balance. Researchers stop when they
are satisfied with the covariate balance they
have obtained or when they tire. One process
for cycling between checking for balance on
the covariates and reformulating the propensity
score model is outlined by Rosenbaum & Rubin
(1984). GenMatch is an alternative to this
process of reformulating the propensity score
model, and like other forms of matching, it is
agnostic about how covariate balance is mea-
sured because this is an open research question.
Therefore, the GenMatch software (Sekhon
2009) offers a variety of ways to measure covari-
ate balance, many of which rely on cumulative
probability distribution functions. By default,
these statistics include paired t-tests, and uni-
variate and multivariate Kolmogorov-Smirnov
tests. Various descriptive statistics based on
empirical-QQ plots are also offered. The statis-
tics are not used to conduct formal hypothesis
tests, because no measure of balance is a mono-
tonic function of bias in the estimand of inter-
est and because we wish to maximize balance
without limit (Imai et al. 2008, Sekhon 2006).
GenMatch can maximize balance based on a va-
riety of predefined measures of balance or any
measure the researcher may wish to use, such
as the Kullback-Leibler divergence measure,
which is popular in information theory and im-
age processing (Kullback & Leibler 1951). For
details see Sekhon (2009).
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GET-OUT-THE-VOTE
CONTROVERSY

In a landmark study of various get-out-the-
vote (GOTV) interventions, Gerber & Green
(2000) reported results from a field experiment
they conducted in New Haven in 1998. Revis-
iting Eldersveld (1956), Gerber & Green 2000
examined the relative effectiveness of various
GOTYV appeals, including short nonpartisan
telephone calls, direct mail, and personal can-
vassing. They found that “[v]oter turnout was
substantially increased by personal canvassing,
slightly by direct mail, and not at all by tele-
phone calls” (Gerber & Green 2000, p. 653).
These results held for both ITT (intention to
treat) and ETT (effect of treatment on the
treated). The noncompliance problem in this
experiment consists of only single crossover—
i.e., there are two types of units, compliers and
never-treat. With random assignment of I'T'T,
ETT can be estimated consistently with the
two-stage least squares approach of Equation 4,
which Gerber & Green used.

Imai (2005) argues that the attempt to ran-
domly assign treatment in the Gerber & Green
study was not successful, and hence, the field
experiment should be analyzed using observa-
tional methods alone. It is argued that neither
ITT nor ETT could be estimated without ad-
justment. Imai uses propensity score matching
to estimate ET'T. Imai assumes that once a set
of observables has been matched upon using his
propensity score, the outcomes of compliers as-
signed to treatment can be compared with the
outcomes of units assigned to control to esti-
mate ET'T. The inferential problem is that the
control group consists of both never-treats and
compliers, whereas the units assigned to treat-
ment who received treatment are all compliers.

The observables used by Imai were drawn
from the usual voter registration files. There
were six covariates for each subject. The indi-
cator variables were as follows: turnout in the
prior election, 1996; new voter registrant; ma-
jor party registrant; and single-voter household.
The two additional covariates were the age of
the subject and the ward of residence.

Sekhbon

Imai argues that contrary to the original
findings, short nonpartisan telephone appeals
did have a significant positive effect on turnout.
Green and Gerber responded in various arti-
cles (Arceneaux et al. 2006, Gerber & Green
2005), and Bowers and Hansen entered the
debate using alternative methods (Bowers &
Hansen 2005, Hansen & Bowers 2009) that re-
confirmed the substantive findings of Gerber &
Green (2000).

Imai performed an invaluable service by
prompting Gerber and Green to find and cor-
rect a number of data-processing errors in the
original Gerber & Green (2000) study.'® Tmai
also performed an important service by point-
ing out that at the level of individuals, the ex-
periment did not appear to be randomized suc-
cessfully even after data-processing errors were
corrected—i.e., covariate imbalances between
treatment and control were greater than one
would expect by chance. In the original study,
the data were analyzed as if individuals were
randomized even though randomization was
actually by household. Prompted by Imai, sub-
sequent randomization checks were performed
at the household level once household identi-
fiers were released.

Consistent with the findings of Gerber &
Green (2000), all analysts aside from Imai have
concluded that short nonpartisan telephone
calls are not effective. This holds in the orig-
inal data for the New Haven study (Bowers &
Hansen 2005, Gerber & Green 2005), the cor-
rected data (Gerber & Green 2005, Hansen &
Bowers 2009), and subsequent large-scale field
experiments conducted in Michigan and Iowa
(Arceneaux et al. 2006).

This exchange highlights an important les-
son: When analyzing any experiment, one

According to Gerber & Green (2005), there were data-
processing errors related to: (#) imperfect matches between
names on the original master file and the names returned
by canvassers; (b) a failure of communication with the phone
bank about which treatment groups were to be assigned the
GOTYV appeal; (¢) data manipulation errors that resulted in
some subjects in the control group being incorrectly recorded
as treatment subjects.
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should stay as close to the experimental design
as possible. This holds even if one conjectures
that randomization has not fully balanced the
covariates in the given sample. Discarding the
experimental design and reverting to purely ob-
servational methods fails to result in unbiased
estimates of the effectiveness of short nonpar-
tisan telephone calls.

Because treatment in the original New
Haven experiment was actually randomized at
the level of households and not individuals, all
randomization checks should be conducted at
the household level. Failing to do so results in
a spurious finding that randomization had not
balanced the observable covariates, when in fact
it had. And, ideally, variance estimates should
take into account that randomization was done
at the household level, although in this exam-
ple this does not appear to make a significant
substantive difference because the number of
households is large.

With the corrected data, when the random-
ization checks are performed at the level of
household, one finds that randomization was
successful (Gerber & Green 2005, Hansen &
Bowers 2009). Therefore, no method is needed
to correct for any randomization issues. Before
the household data were available and before
it was known by Imai or Bowers & Hansen
that randomization was done by household,
it was found that if matching was used to
simply strengthen the randomization—i.e., the
randomization was not ignored—the original
Gerber & Green results were recovered
(Bowers & Hansen 2005). The simplest
method of strengthening the randomization
is to use stratification: to apply the estima-
tor in Equation 4 within strata defined by
observed confounders. Within each stratum,
the confounders used to define the strata
obviously cannot be an issue (if the covariates
are homogeneous within strata).

Even if the original New Haven dataset
is examined, and randomization is ignored,
Imai’s results are not robust to slight changes
in methodology such as correcting his biased
variance estimates. Unconventionally, Imai

reported not the full sample point estimate, but
the average estimate from 500 bootstrap esti-
mates. However, using the full sample point
estimate results in a p-value that is not sig-
nificant at conventional test levels, even if
one uses Imai’s bootstrap variance estimate
(Gerber & Green 2005). But bootstrapping
yields biased variance estimates for matching
estimators (Abadie & Imbens 2006b). If one
does not use the bootstrap but, for example,
the Abadie & Imbens (2006a) approach to es-
timate the point and variance estimates, one
does not obtain a significant estimate at con-
ventional levels (the point estimate is 5.6%,
and the Abadie-Imbens standard error is 3.2).
The same holds if one uses Imai’s own code but
simply does one-to-one matching with replace-
ment (Gerber & Green 2005).

Matching in this example fails at least two
different placebo tests. Placebo tests are under-
used as robustness checks in observational stud-
ies. Such tests are the observational equivalent
of giving a sugar pill to a patient in the con-
trol group in a clinical trial. We know a priori
that such a pill should have a zero treatment
effect because of our knowledge of the bio-
chemical properties of sugar pills. Therefore,
the biochemical effectiveness of the treatment
of interest can be estimated by comparing it
to the results from the placebo group. (Even
if the placebo does have an effect, we know
it cannot be because of any biochemical prop-
erty of the pill itself, so the placebo group still
serves as a useful benchmark against which to
measure the treatment of interest.) In an ob-
servational placebo test, one attempts to find
a stratum of data and an outcome for which
the treatment effect is known with similar cer-
tainty. Then one tests to see if the observational
method one is using is able to recover the re-
sult that is known a priori. In this fashion, one
simultaneously checks both the selection-on-
observables assumption and the estimator. In
the present case there are two obvious placebo
tests.

The first, which is the clearer one because
it follows directly from the assumptions of the
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matching estimator, is to estimate the causal
effect of being assigned to treatment but never
receiving it. Since being assigned to receive a
telephone GOTV appeal but never receiving
the appeal cannot logically have an effect on
turnout, we have a clear placebo: the causal
effect must logically be zero. The outcomes of
never-treat units who were assigned to treat-
ment are being compared with the outcomes
of the never-treat units who were assigned to
control. The control group, however, consists
of units who would be never-treat if they were
assigned to treatment and units who would be
compliers. For a valid comparison, one has to
find the never-treat in the control group to
compare with the never-treat who are assigned
to treatment. Imai’s observational approach
purports to solve this inferential problem,
since he has to find the compliers in control
to compare with the compliers in treatment.
Unfortunately, the estimate produced for this
placebo test by one-to-five propensity score
matching, the type used by Imai (2005), is
—5.6% with a standard error of 2.3 (Gerber
& Green 2005).

A second placebo test is offered by consid-
ering whether telephone calls have a zero ef-
fect on past turnout. In this setup, one obvi-
ously does not match on previous turnout since
thatbecomes the “outcome” of interest, but one
does match on the turnout before the placebo
outcome. This placebo test is most appropri-
ate for the Michigan and Towa experiments de-
scribed by Arceneaux et al. (2006) because of
the availability of turnout history during the
past two elections. In these experiments, exact
matching estimates ETT to be 1.61% with an
Abadie-Imbens (Abadie & Imbens 20062) stan-
dard error of 0.258.!! Exact matching was used
to condition on turnout in the election before,
age, gender, competitiveness, and household
size. As in the previous placebo test, matching
claims to find an effect where none is logically
possible.

This was estimated using the Matching package (Sekhon
2009) for the R Project for Statistical Computing.

Sekbon

Both of these placebo tests, if conducted,
would probably have given any analyst pause.
But as is all too common, the selection-on-
observables assumption is accepted readily—
by reviewers, by readers, and most importantly
by data analysts themselves. Placebo tests, even
when they are possible as in the present case,
are rarely conducted.

This behavior is consistent with what
has been observed in other disciplines, in-
cluding economics, epidemiology, and clini-
cal medicine. Experimental results are rarely
recovered by observational methods, placebo
tests are usually not done, and when they are
reported by some researcher to caution against
the use of observational methods, such tests
are usually ignored. This occurs even in cases
where lives are at stake. Tens of thousands of
women probably died because their physicians
prescribed hormone replacement therapy based
on observational studies (Freedman & Petitti
2005a,b).

The GOTV controversy is odd. And its odd-
ity highlights our discipline’s belief in models.
In order to use a matching algorithm, one need
not have discarded all information about the ex-
periment and reverted to purely observational
methods. The hybrid approach of Bowers &
Hansen (2005) allows one to adjust for any im-
balance that remains in the observed covariates
while using the information in the randomiza-
tion. Both this hybrid approach and two-stage
least squares with covariates make the same
identification assumption. Both assume that
once we condition on X, we can proceed as if the
treatment assigned in the experiment is random
and as if the compliance model described in the
previous section holds. The two methods just
differ in how they condition on X: via a paramet-
ric model or via stratification or matching. In
contrast, as stated before, matching alone makes
the same identifying assumption as OLS. Both
methods rely on the selection-on-observables
identification assumption, and they differ in the
extent to which they rely on functional form
assumptions.

Given the results of this debate, it is clear
that the selection-on-observables assumption is
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not valid in this case. And there may be lessons
of general interest:

1. TITT should always be reported, and go-
ing beyond I'T'T should be done only with
care.

2. All data analysis should leverage the ex-
perimental design as much as possible.

3. Selection on observables and other iden-
tifying assumptions not guaranteed by the
design should be considered incorrect un-
less compelling evidence to the contrary
is provided.

4. Placebo tests should be conducted when-
ever possible, and observational studies
without them should be marked down.

CONCLUSION

As a discipline, we value novelty. But we do not
want to change radically. We like new twists
that do not challenge our standard research
practices. With both quantitative and qualita-
tive methods, we hope that the next innova-
tion will solve our inference problems. Since
we have tried to mass produce science on the
cheap, we should not be surprised that a tradi-
tion which relies on finding a valid design is not
dominant.

These observations are not new. David
Freedman has made similar comments over the
years about our discipline in particular and the
social sciences in general (e.g., Freedman 1995,
1999, 2008a). In one famous example, he con-
trasts our norms and methods with the case
of John Snow and cholera, a prominent exam-
ple of the success of observational methods for
causal inference (Freedman 1991, 1999; Snow
1855; Vinten-Johansen et al. 2003). As early as
the cholera outbreak of 1831-1832, the first to
reach England, Snow doubted the miasma the-
ory as it applied to cholera. In the outbreak of

DISCLOSURE STATEMENT

1848, he decided to track the progress of the
disease, and he was able to find the index case,
John Harnold, and document its spread and
natural history. In the 1850s, Snow accumulated
data on the epidemics of 1853-1854 and ana-
lyzed the “grand experiment” that linked the
disease to specific water suppliers. The Broad
Street pump natural experiment occurred in
1854.In 1831, Snow had a hypothesis based on
evidence, but no compelling design to make a
rigorous causal inference. For a compelling set
of natural experiments he had to wait for 1854.
A young researcher today who waited that long
to find the right design would soon be out of a
job. Researchers know this and adapt.

It should be no surprise that the modeling
enterprise is the dominant one. Unfortunately,
as matching is gaining popularity, its ties to
the Neyman-Rubin causal model and consid-
erations of design are weakening. Rubin (2008)
notes that “design trumps analysis,” but designs
for observational data cannot be mass pro-
duced. From hunger comes our belief in anal-
ysis by models, statistical or otherwise, match-
ing or kernel estimation, maximum likelihood
or Bayesian.

For most researchers, the math obscures the
assumptions. Without an experiment, a natu-
ral experiment, a discontinuity, or some other
strong design, no amount of econometric or
statistical modeling can make the move from
correlation to causation persuasive. This con-
clusion has implications for the kind of causal
questions we are able to answer with some
rigor. Clear, manipulable treatments and rigor-
ous designs are essential. And the only designs
I know of that can be mass produced with rel-
ative success rely on random assignment. Rig-
orous observational studies are important and
needed. ButI do not know how to mass produce

them.

The author is not aware of any affiliations, memberships, funding, or financial holdings that might
be perceived as affecting the objectivity of this review.
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