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Abstract
We provide a principled way for investigators to analyze random-
ized experiments when the number of covariates is large. Investiga-
tors often use linear multivariate regression to analyze randomized
experiments instead of simply reporting the difference of means be-
tween treatment and control groups. Their aim is to reduce the vari-
ance of the estimated treatment effect by adjusting for covariates.
If there are a large number of covariates relative to the number of
observations, regression may perform poorly because of overfitting.
In such cases, the Lasso may be helpful. We study the resulting
Lasso-based treatment effect estimator under the Neyman-Rubin
model of randomized experiments. We present theoretical condi-
tions that guarantee that the estimator is more efficient than the
simple difference-of-means estimator, and we provide a conserva-
tive estimator of the asymptotic variance, which can yield tighter
confidence intervals than the difference-of-means estimator. Sim-
ulation and data examples show that Lasso-based adjustment can
be advantageous even when the number of covariates is less than
the number of observations. Specifically, a variant using Lasso for
selection and OLS for estimation performs particularly well, and it
chooses a smoothing parameter based on combined performance of
Lasso and OLS.
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1. Introduction

Randomized experiments are widely used to measure the
efficacy of treatments. Randomization ensures that treat-
ment assignment is not influenced by any potential con-
founding factors, both observed and unobserved. Exper-
iments are particularly useful when there is no rigorous
theory of a system’s dynamics, and full identification of
confounders would be impossible. This advantage was
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cast elegantly in mathematical terms in the early 20th
century by Jerzy Neyman, who introduced a simple model
for randomized experiments, which showed that the dif-
ference of average outcomes in the treatment and control
groups is statistically unbiased for the Average Treatment
Effect (ATE) over the experimental sample [1].

However, no experiment occurs in a vacuum of scien-
tific knowledge. Often, baseline covariate information
is collected about individuals in an experiment. Even
when treatment assignment is not related to these covari-
ates, analyses of experimental outcomes often take them
into account with the goal of improving the accuracy of
treatment effect estimates. In modern randomized ex-
periments, the number of covariates can be very large—
sometimes even larger than the number of individuals in
the study. In clinical trials overseen by regulatory bod-
ies like the FDA and MHRA, demographic and genetic
information may be recorded about each patient. In ap-
plications in the tech industry, where randomization is
often called A/B testing, there is often a huge amount of
behavioral data collected on each user. However, in this
‘big data’ setting, much of this data may be irrelevant to
the outcome being studied or there may be more potential
covariates than observations, especially once interactions
are taken into account. In these cases, selection of impor-
tant covariates or some form of regularization is necessary
for effective regression adjustment.

To ground our discussion, we examine a randomized
trial of the Pulmonary Artery Catheter (PAC) that was
carried out in 65 intensive care units in the UK between
2001 and 2004, called PAC-man [2]. The PAC is a moni-
toring device commonly inserted into critically ill patients
after admission to intensive care, and it provides a contin-
uous measurement of several indicators of cardiac activ-
ity. However, insertion of PAC is an invasive procedure
that carries some risk of complications (including death),
and it involves significant expenditure both in equipment
costs and personnel [3]. Controversy over its use came to
a head when an observational study found that PAC had

1



an adverse effect on patient survival and led to increased
cost of care [4]. This led to several large-scale randomized
trials, including PAC-man.

In the PAC-man trial, randomization of treatment was
largely successful, and a number of covariates were mea-
sured about each patient in the study. If covariate inter-
actions are included, the number of covariates exceeds the
number of individuals in the study; however, few of them
are predictive of the patient’s outcome. As it turned out,
the (pre-treatment) estimated probability of death was
imbalanced between the treatment and control groups (p
= 0.005, Wilcoxon rank sum test). Because the control
group had, on average, a slightly higher risk of death,
the unadjusted difference-in-means estimator may over-
estimate the benefits of receiving a PAC. Adjustment for
this imbalance seems advantageous in this case, since the
pre-treatment probability of death is clearly predictive of
health outcomes post-treatment.

In this paper, we study regression-based adjustment,
using the Lasso to select relevant covariates. Standard
linear regression based on ordinary least squares suffers
from over-fitting if a large number of covariates and in-
teraction terms are included in the model. In such cases,
researchers sometimes perform model selection based on
observing which covariates are unbalanced given the real-
ized randomization. This generally leads to misleading in-
ferences because of incorrect test levels [5]. The Lasso [6]
provides researchers with an alternative that can mitigate
these problems and still perform model selection. We de-

fine an estimator, ÂTELasso, which is based on running
an l1-penalized linear regression of the outcome on treat-
ment, covariates and, following the method introduced
in [7], treatment × covariate interactions. Because of
the geometry of the l1 penalty, the Lasso will usually set
many regression coefficients to 0, and is well defined even
if the number of covariates is larger than the number of
observations. The Lasso’s theoretical properties under
the standard linear model have been widely studied in
the last decade; consistency properties for coefficient es-
timation, model selection, and out-of-sample prediction
are well understood (see [8] for an overview).

In the theoretical analysis in this paper, instead of
assuming that the standard linear model is the true
data-generating mechanism, we work under the afore-
mentioned non-parametric model of randomization intro-
duced by Neyman [1] and popularized by Donald Ru-
bin [9]. In this model, the outcomes and covariates are
fixed quantities, and the treatment group is assumed to
be sampled without replacement from a finite population.
The treatment indicator, rather than an error term, is
the source of randomness, and it determines which of two
potential outcomes is revealed to the experimenter. Un-
like the standard linear model, the Neyman-Rubin model
makes few assumptions not guaranteed by the random-

ization itself. The setup of the model does rely on the
stable unit treatment value assumption (SUTVA), which
states that there is only one version of treatment, and that
the potential outcome of one unit should be unaffected
by the particular assignment of treatments to the other
units; however it makes no assumptions of linearity or ex-
ogeneity of error terms. Ordinary Least Squares (OLS)
[10][11][7], logistic regression [12], and post-stratification
[13] are among the adjustment methods that have been
studied under this model.

To be useful to practitioners, the Lasso-based treat-
ment effect estimator must be consistent and yield a
method to construct valid confidence intervals. We out-
line conditions on the covariates and potential outcomes
that will guarantee these properties. We show that an up-
per bound for the asymptotic variance can be estimated
from the model residuals, yielding asymptotically con-
servative confidence intervals for the average treatment
effect which can be substantially narrower than the un-
adjusted confidence intervals. Simulation studies are pro-
vided to show the advantage of the Lasso adjusted esti-
mator and to show situations where it breaks down. We
apply the estimator to the PAC-man data, and compare
the estimates and confidence intervals derived from the
unadjusted, OLS-adjusted, and Lasso-adjusted methods.
We also compare different methods of selecting the Lasso
tuning parameter on this data.

2. Framework and definitions

We give a brief outline of the Neyman-Rubin model for
a randomized experiment; the reader is urged to consult
[1], [9], and [14] for more details. We follow the notation
introduced in [10] and [7]. For concreteness, we illustrate
the model in the context of the PAC-man trial.

For each individual in the study, the model assumes
that there exists a pair of quantities representing his/her
health outcomes under the possibilities of receiving and
not receiving the catheter. These are called the potential
outcomes under treatment and control, and are denoted
as ai and bi, respectively. In the course of the study,
the experimenter observes only one of these quantities
for each individual, since the catheter is either inserted
or not. The causal effect of the treatment on individual i
is defined, in theory, to be ai−bi, but this is unobservable.
Instead of trying to infer individual-level effects, we will
assume that the intention is to estimate the average causal
effect over the whole population, as outlined in the next
section.

In the mathematical specification of this model we con-
sider the potential outcomes to be fixed, non-random
quantities, even though they are not all observable. The
only randomness in the model comes from the assignment
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of treatment, which is controlled by the experimenter. We
define random treatment indicators Ti, which take on a
value 1 for a treated individual, or 0 for an untreated indi-
vidual. We will assume that the set of treated individuals
is sampled without replacement from the full population,
where the size of the treatment group is fixed beforehand;
thus the Ti are identically distributed but not indepen-
dent. The model for the observed outcome for individual
i, defined as Yi, is thus

Yi = Tiai + (1− Ti)bi.

This equation simply formalizes the idea that the exper-
imenter observes the potential outcome under treatment
for those who receive the treatment, and the potential
outcome under control for those who do not.

Note that the model does not incorporate any covari-
ate information about the individuals in the study, such
as physiological characteristics or health history. How-
ever, we will assume we have measured a vector of base-
line, pre-experimental covariates for each individual i.
These might include, for example, age, gender, and ge-
netic makeup. We denote the covariates for individual
i as the column vector xi = (xi1, ..., xip)

T ∈ Rp and the
full design matrix of the experiment as X = (x1, ...,xn)T .
In the theoretical results, we will assume that there is a
correlational relationship between an individual’s poten-
tial outcomes and covariates, but we will not assume a
generative statistical model.

Define the set of treated individuals as A = {i ∈
{1, ..., n} : Ti = 1}, and similarly define the set of control
individuals as B. Define the number of treated and con-
trol individuals as nA = |A| and nB = |B|, respectively,
so that nA + nB = n. To indicate averages of quantities
over these individuals, we introduce the notation ·̄A and
·̄B . Thus, for example, the average value of the potential
outcomes and the covariates in the treatment group are

āA = n−1A
∑
i∈Aai, x̄A = n−1A

∑
i∈Axi,

respectively. Note that these are random quantities in
this model, since the set A is determined by the random
treatment assignment. When we want to take the average
over the whole population, we will use the notation ·̄, such
as

ā = n−1
∑n
i=1ai, b̄ = n−1

∑n
i=1bi, x̄ = n−1

∑n
i=1xi.

Note that the averages of potential outcomes over the
whole population are not considered random, but are un-
observable.

3. Treatment effect estimation

Our main inferential goal will be average effect of the
treatment over the whole population in the study. In

a trial such as PAC-man, this represents the difference
between the average outcome if everyone had received the
catheter, and the average outcome if no one had received
it. This is defined as

ATE = ā− b̄.

The most natural estimator arises by replacing the pop-
ulation averages with the sample averages:

ÂTEunadj
def
= āA − b̄B ,

The subscript “unadj” indicates an estimator without re-
gression adjustment. The foundational work in [1] points
out that, under a randomized assignment of treatment,

ÂTEunadj is unbiased for ATE, and derives a conserva-
tive procedure for estimating its variance.

While ÂTEunadj is an attractive estimator, covariate
information can be used to make adjustments in the hope
of reducing variance. A commonly used estimator is

ÂTEadj =
[
āA − (x̄A − x̄)

T
β̂
(a)
]
−
[
b̄B − (x̄B − x̄)

T
β̂
(b)
]

where β̂
(a)
, β̂

(b)
∈ Rp are adjustment vectors for the

treatment and control groups, respectively, as indicated
by the superscripts. The terms x̄A − x̄ and x̄B − x̄ rep-
resent the fluctuation of the covariates in the subsample
relative to the full sample, and the adjustment vectors fit
the linear relationships between the covariates and poten-
tial outcomes under treatment and control. For example,
in the PAC-man trial, this would help alleviate the imbal-
ance in the pre-treatment estimated probability of death:
the corresponding element of x̄B − x̄ would be positive
(due to the higher average probability of death in the

control group), the corresponding element of β̂
(b)

would
be negative (a higher probability of death correlates with
worse health outcomes), so the overall treatment effect
estimate would be adjusted downwards. This procedure
is equivalent to imputing the unobserved potential out-
comes; if we define

ˆ̄aB = āA + (x̄B − x̄A)
T
β̂
(a)
, ˆ̄bA = b̄B + (x̄A − x̄B)

T
β̂
(b)
,

we can form the equivalent estimator

ÂTEadj = n−1
(
nAāA + nB ˆ̄aB

)
− n−1

(
nB b̄B + nA

ˆ̄bA

)
.

If we consider these adjustment vectors to be fixed (non-
random), or if they are derived from an independent data
source, then this estimator is still unbiased, and may
have substantially smaller asymptotic and finite-sample
variance than the unadjusted estimator. This allows for
construction of tighter confidence intervals for the true
treatment effect.
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In practice, the “ideal” linear adjustment vectors, lead-
ing to a minimum-variance estimator of the form of

ÂTEadj, cannot be computed from the observed data.
However, they can be estimated, possibly at the expense
of introducing modest finite-sample bias into the treat-
ment effect estimate. In the classical setup, when the
number of covariates is relatively small, ordinary least
squares (OLS) regression can be used. The asymptotic
properties of this kind of estimator are explored under
the Neyman-Rubin model in [11], [12], and [7]. We will
follow a particular scheme which is studied in [7] and
shown to have favorable properties: we regress the out-
come on treatment indicators, covariates, and treatment
× covariate interactions. This is equivalent to running
separate regressions in the treatment and control groups
of outcome against an intercept and covariates. If we de-

fine β̂
(a)

OLS and β̂
(b)

OLS as the coefficients from the separate
regressions, then the estimator is

ÂTEOLS =
[
āA − (x̄A − x̄)

T
β̂
(a)

OLS

]
−
[
b̄B − (x̄B − x̄)

T
β̂
(b)

OLS

]
.

This has some finite-sample bias, but [7] shows that it
vanishes quickly at the rate of 1/n under moment condi-
tions on the potential outcomes and covariates. Moreover,
for a fixed p, under regularity conditions, the inclusion
of interaction terms guarantees that it never has higher
asymptotic variance than the unadjusted estimator, and
asymptotically conservative confidence intervals for the
true parameter can be constructed.

In modern randomized trials, where a large number
of covariates are recorded for each individual, p may be
comparable to or even larger than n. In this case OLS
regression can overfit the data badly, or may even be ill-
posed, leading to estimators with large finite-sample vari-
ance. To remedy this, we propose estimating the adjust-
ment vectors using the Lasso [6]. The adjustment vectors
would take the form

β̂
(a)

Lasso = arg min
β

[
1

2nA

∑
i∈A

(
ai − āA − (xi − x̄A)Tβ

)2
+λa

p∑
j=1

|βj |
]
,

(1)

β̂
(b)

Lasso = arg min
β

[
1

2nB

∑
i∈B

(
bi − b̄B − (xi − x̄B)Tβ

)2
+λb

p∑
j=1

|βj |
]
,

(2)

and the proposed Lasso adjusted ATE estimator is1

ÂTELasso =
[
āA − (x̄A − x̄)

T
β̂
(a)

Lasso

]
−
[
b̄B − (x̄B − x̄)

T
β̂
(b)

Lasso

]
.

Here λa and λb are regularization parameters for the
Lasso which must be chosen by the experimenter; sim-
ulations show that cross-validation works well. In the
next section, we study this estimator under the Neyman-
Rubin model, and provide conditions on the potential
outcomes, the covariates and the regularization parame-

ters under which ÂTELasso enjoys similar asymptotic and

finite-sample advantages as ÂTEOLS.

It is worth noting that when two different adjustments
are made for the treatment and control groups as in [7]
and here, the covariates do not have to be the same for
the two groups. However, when they are not the same,
the Lasso or OLS adjusted estimators are no longer guar-
anteed to have smaller or equal asymptotic variance than
the unadjusted one, even in the case of fixed p. In prac-
tice, one may still choose between the adjusted and unad-
justed estimators based on the widths of the correspond-
ing confidence intervals.

4. Theoretical results

4.1. Notation

For a vector β ∈ Rp and a subset S ⊂ {1, ..., p}, let βj be
the j-th component of β, βS = (βj : j ∈ S)T , Sc be the
complement of S, and |S| the cardinality of the set S. For
any column vector u = (u1, ..., um)T , let ‖u‖22 =

∑m
i=1 u

2
i ,

‖u‖1 =
∑m
i=1 |ui|, ‖u‖∞ = maxi=1,...,m |ui| and ‖u‖0 =

|{j : uj 6= 0}|. For a given m×m matrix D, let λmin(D)
and λmax(D) be the smallest and largest eigenvalues of
D respectively, and D−1 the inverse of the matrix D.

Let
d→ and

p→ denote convergence in distribution and in
probability, respectively.

4.2. Decomposition of the potential
outcomes

The Neyman-Rubin model does not assume a linear
relationship between the potential outcomes and the co-
variates. In order to study the properties of adjustment
under this model, we decompose the potential outcomes
into a term linear in the covariates and an error term.

1To simplify the notation, we omit the dependence of β̂
(a)
Lasso,

β̂
(b)
Lasso, λa and λb on the population size n.
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Given vectors of coefficients β(a),β(b) ∈ Rp, we write2 for
i = 1, ..., n,

ai = ā+ (xi − x̄)Tβ(a) + e
(a)
i , (3)

bi = b̄+ (xi − x̄)Tβ(b) + e
(b)
i . (4)

Note that we have not added any assumptions to the

model; we have simply defined unit-level residuals, e
(a)
i

and e
(b)
i , given the vectors β(a),β(b). All the quantities

in 3 and 4 are fixed, deterministic numbers. It is easy to
verify that ē(a) = ē(b) = 0. In order to pursue a theory
for the Lasso, we will add assumptions on the populations
of ai’s, bi’s, and xi’s, and we will assume the existence
of β(a),β(b) such that the error terms satisfy certain as-
sumptions.

4.3. Conditions

We will need the following to hold for both the treatment
and control potential outcomes. The first set of assump-
tions (1-3) are similar to those found in [7].

Condition 1 Stability of treatment assignment probabil-
ity.

nA/n→ pA, as n→∞ (5)

for some pA ∈ (0, 1).

Condition 2 The centered moment conditions. There
exists a fixed constant L > 0 such that, for all n = 1, 2, ...
and j = 1, ..., p,

n−1
∑n
i=1 (xij − (x̄)j)

4 ≤ L; (6)

n−1
∑n
i=1(e

(a)
i )4 ≤ L; n−1

∑n
i=1(e

(b)
i )4 ≤ L. (7)

Condition 3 The means n−1
∑n
i=1(e

(a)
i )2, n−1

∑n
i=1(e

(b)
i )2

and n−1
∑n
i=1e

(a)
i e

(b)
i converge to finite limits.

Since we consider the high-dimensional setting where p
is allowed to be much larger than n, we need additional
assumptions to ensure that the Lasso is consistent for
estimating β(a) and β(b). Before stating them, we define
several quantities.

Def inition 1 Given β(a) and β(b), the sparsity measures
for treatment and control groups, s(a) and s(b), are defined
as the number of nonzero elements of β(a) and β(b), i.e.,

s(a) = |{j : β
(a)
j 6= 0}|, s(b) = |{j : β

(b)
j 6= 0}|, (8)

respectively. We will allow s(a) and s(b) to grow with n,
though the notation does not explicitly show this.

2Again, we omit the dependence of β(a), β(b), λa, λb, e
(a) and

e(b) on n.

Def inition 2 Define δn to be the maximum covariance
between the error terms and the covariates.

δn = max
ω=a,b

{
max
j

∣∣∣∣∣ 1n
n∑
i=1

(xij − (x̄)j)
(
e
(ω)
i − ē(ω)

)∣∣∣∣∣
}
. (9)

The following conditions will guarantee that the Lasso
consistently estimates the adjustment vectors β(a),β(b)

at a fast enough rate to ensure asymptotic normality of

ÂTELasso. It is an open question whether a weaker form
of consistency would be sufficient for our results to hold.

Condition 4 Decay and scaling. Let s = max
{
s(a), s(b)

}
.

δn = o

(
1

s
√

log p

)
. (10)

(s log p)/
√
n = o(1). (11)

Condition 5 Cone invertibility factor. Define the Gram
matrix as Σ = n−1

∑n
i=1(xi − x̄)(xi − x̄)T : There exist

constants C > 0 and ξ > 1 not depending on n, such that

‖hS‖1 ≤ Cs‖Σh‖∞, ∀h ∈ C, (12)

with C = {h : ‖hSc‖1 ≤ ξ‖hS‖1}, and

S = {j : β
(a)
j 6= 0 or β

(b)
j 6= 0}. (13)

Condition 6 Let τ = min
{

1/70, (3pA)2/70, (3 −
3pA)2/70

}
. For constants 0 < η < ξ−1

ξ+1 and 1
η < M <∞,

assume the regularization parameters of the Lasso belong
to the sets

λa ∈ (
1

η
,M ]×

(
2(1 + τ)L1/2

pA

√
2 log p

n
+ δn

)
, (14)

λb ∈ (
1

η
,M ]×

(
2(1 + τ)L1/2

pB

√
2 log p

n
+ δn

)
. (15)

Denote respectively the population variances of e(a)

and e(b) and the population covariance between them by

σ2
e(a) = n−1

∑n
i=1(e

(a)
i )2, σ2

e(b) = n−1
∑n
i=1(e

(b)
i )2,

σe(a)e(b) = n−1
∑n
i=1e

(a)
i e

(b)
i .

Theorem 1 Assume conditions 1 through 6 hold for
some β(a) and β(b). Then

√
n
(
ÂTELasso −ATE

)
d→ N

(
0, σ2

)
(16)

where

σ2 = lim
n→∞

[
1− pA
pA

σ2
e(a) +

pA
1− pA

σ2
e(b) + 2σe(a)e(b)

]
.

(17)
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The proof of Theorem 1 is given in the supporting in-
formation. It is easy to show, as in the following corollary

of Theorem 1, that the asymptotic variance of ÂTELasso

is no worse than ÂTEunadj when β(a) and β(b) are de-
fined as coefficients of regressing potential outcomes on
a subset of covariates. More specifically, suppose there
exists a subset J ⊂ {1, ..., p}, such that

β(a) = ((β
(a)
J )T ,0)T , β(b) = ((β

(b)
J )T ,0)T , (18)

where β
(a)
J and β

(b)
J are the population level OLS coef-

ficients for regressing the potential outcomes a and b on
the covariates in the subset J with intercept, respectively.

Corollary 1 For β(a) and β(b) defined in 18 and some
λa and λb, assume conditions 1 through 6 hold. Then the

asymptotic variance of
√
n ÂTELasso is no greater than

that of the
√
n ÂTEunadj. The difference is 1

pA(1−pA)∆,

where

∆ = − lim
n→∞

‖XβE‖22 ≤ 0, (19)

βE = (1− pA)β(a) + pAβ
(b). (20)

Remark 1. If, instead of Condition 6, we assume that
the covariates are uniformly bounded, i.e., maxi,j |xij | ≤
L, then the fourth moment condition on the error terms,
given in 7, can be weakened to a second moment condi-
tion. While we do not prove the necessity of any of our
conditions, our simulation studies show that the distribu-
tions of the unadjusted and the Lasso adjusted estimator
may be non-normal when: (1) The covariates are gener-
ated from Gaussian distributions and the error terms do
not satisfy second moment condition, e.g., being generated
from a t distribution with one degree of freedom; or (2)
The covariates do not have bounded fourth moments, e.g.,
being generated from a t distribution with three degrees of
freedom. See the histograms in Figure 1 where the cor-
responding p-values of Kolmogorov–Smirnov testing for
normality are less than 2.2e−16. These findings indicate
that our moment conditions cannot be dramatically weak-
ened for asymptotic normality. However, we also find
that the Lasso adjusted estimator still has smaller vari-
ance and mean squared error than the unadjusted estima-
tor, even when these moment conditions do not hold. In
practice, when the covariates do not have bounded fourth
moments, one may perform some transformation—e.g., a
logarithm transformation—to ensure that the transformed
covariates have bounded fourth moments while having a
sufficiently large variance so as to retain useful informa-
tion. We leave it as future work to explore the properties
of different transformations.
Remark 2. Statement 11, typically required in de-
biasing the Lasso [15], is stronger by a factor of

√
log p

than the usual requirement for l1 consistency of the Lasso.

Error term from t1 distribution
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Figure 1: Histograms of the unadjusted estimator and
the Lasso adjusted estimator when the moment condi-
tions do not hold. We select the tuning parameters for
Lasso using 10-fold cross validation. The potential out-
comes are simulated from linear regression model and
then kept fixed, see more details in the supporting infor-
mation. For the upper two subplots, the error terms are
generated from t distribution with one degree of freedom
and therefore do not satisfy second moment condition;
while for the lower two subplots, the covariates are gen-
erated from t distribution with there degrees of freedom
and thus violate fourth moment condtion.

Remark 3. Condition 5 is slightly weaker than the
typical restricted eigenvalue condition for analyzing the
Lasso.

Remark 4. If we assume δn = O

(√
log p
n

)
which satis-

fies 10, then Condition 6 requires that the tuning parame-

ters are proportional to
√

log p
n which is typically assumed

for the Lasso in the high-dimensional linear regression
model.

Remark 5. For fixed p, δn = 0 in 9, Condition 4 holds
automatically, and Condition 5 holds when the smallest
eigenvalue of Σ is uniformly bounded away from 0. In this
case, Corollary 1 reverts to Corollary 1.1. in [7]. When
these conditions are not satisfied, we should set λa and λb
to be large enough to cause the Lasso adjusted estimator
to revert to the unadjusted one.
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5. Neyman-type conservative
variance estimate

We note that the asymptotic variance in Theorem 1 in-
volves the cross-product term σe(a)e(b) which is not consis-
tently estimable in the Neyman-Rubin model as ai and bi
are never simultaneously observed. However, we can give
a Neyman-type conservative estimate of the variance. Let

σ̂2
e(a) =

1

nA − df (a)
∑
i∈A

(
ai − āA − (xi − x̄A)T β̂

(a)

Lasso

)2
,

(21)

σ̂2
e(b) =

1

nB − df (b)
∑
i∈B

(
bi − b̄B − (xi − x̄B)T β̂

(b)

Lasso

)2
,

(22)
where df (a) and df (b) are degrees of freedom defined by

df (a) = ŝ(a) + 1 = ||β̂
(a)

Lasso||0 + 1;

df (b) = ŝ(b) + 1 = ||β̂
(b)

Lasso||0 + 1.

Define the variance estimate of
√
n(ÂTELasso −ATE)

as follows:

σ̂2
Lasso =

n

nA
σ̂2
e(a) +

n

nB
σ̂2
e(b) . (23)

Condition 7 For the Gram matrix Σ defined in Condi-
tion 5, the largest eigenvalue is bounded away from ∞,
that is, there exists a constant Λmax <∞ such that

λmax (Σ) ≤ Λmax.

Theorem 2 Assume conditions in Theorem 1 and con-
dition 7 hold. Then σ̂2

Lasso converges in probability to

1

pA
lim
n→∞

σ2
e(a) +

1

1− pA
lim
n→∞

σ2
e(b) ,

which is greater than or equal to the asymptotic variance

of
√
n(ÂTELasso −ATE). The difference is

lim
n→∞

1

n

n∑
i=1

[
ai − bi −ATE − (xi − x̄)T (β(a) − β(b))

]2
.

Remark 6. The Neyman-type conservative variance es-
timate for the unadjusted estimator is given by

σ̂2
unadj =

n

nA

1

nA − 1

∑
i∈A

(ai − āA)2+
n

nB

1

nB − 1

∑
i∈B

(
bi − b̄B

)2
,

which, under second moment conditions of potential out-
comes a and b, converges in probability to

1

pA
lim
n→∞

1

n

n∑
i=1

(ai − ā)2 +
1

1− pA
lim
n→∞

1

n

n∑
i=1

(bi − b̄)2.

Therefore, for the β(a) and β(b) defined in [18], the limit
of σ̂2

Lasso is no greater than that of σ̂2
unadj and the differ-

ence is

− lim
n→∞

1

n

n∑
i=1

1

pA

[
(xi−x̄)T (β(a))

]2
+

1

1− pA

[
(xi−x̄)T (β(b))

]2
.

Remark 7. With the conservative variance estimate in
Theorem 2, the Lasso adjusted confidence interval is also
valid for the PATE (Population Average Treatment Ef-
fect) if there is a super population of size N with N > n.
Remark 8. The extra Condition 7 is used to obtain the
following bounds for the number of selected covariates by
the Lasso: max (ŝ(a), ŝ(b)) = op(min (nA, nB)). Condi-
tion 7 can be removed from Theorem 2 if we redefine σ̂2

e(a)

and σ̂2
e(b)

without adjusting the degrees of freedom, i.e.,

(σ̂∗)2e(a) =
1

nA

∑
i∈A

(
ai − āA − (xi − x̄A)T β̂

(a)

Lasso

)2
,

(σ̂∗)2e(b) =
1

nB

∑
i∈B

(
bi − b̄B − (xi − x̄B)T β̂

(b)

Lasso

)2
,

and define (σ̂∗)2Lasso = n
nA

(σ̂∗)2
e(a)

+ n
nB

(σ̂∗)2
e(b)

. It follows

from the bounds for max (ŝ(a), ŝ(b)) that (σ̂2
e(a)

, σ̂2
e(b)

) and
((σ̂∗)2

e(a)
, (σ̂∗)2

e(b)
) have the same asymptotic property.

Theorem 3 Assume the conditions in Theorem 1 hold.
Then (σ̂∗)2Lasso converges in probability to

1

pA
lim
n→∞

σ2
e(a) +

1

1− pA
lim
n→∞

σ2
e(b) .

Remark 9. Though (σ̂∗)2Lasso has the same limit as
σ̂2
Lasso, our simulation experience shows that, in finite

samples, the confidence intervals based on (σ̂∗)2Lasso may
yield low coverage probabilities (e.g., the coverage prob-
ability for 95% confidence interval can be only 80%).
Hence, we recommend readers to use σ̂2

Lasso in practice.

6. Related work

The Lasso has already made several appearances in the
literature on treatment effect estimation. In the con-
text of observational studies, [15] constructs confidence
intervals for preconceived effects or their contrasts by de-
biasing the Lasso adjusted regression, [16] employs the
Lasso as a formal method for selecting adjustment vari-
ables via a two-stage procedure which concatenates fea-
tures from models for treatment and outcome, and simi-
larly, [17] gives very general results for estimating a wide
range of treatment effect parameters, including the case
of instrumental variables estimation. In addition to the
Lasso, [18] considers nonparametric adjustments in the
estimation of ATE. In works such as these, which deal
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with observational studies, confounding is the major is-
sue. With confounding, the naive difference-in-means es-
timator is biased for the true treatment effect, and ad-
justment is used to form an unbiased estimator. How-
ever, in our work, which focuses on a randomized trial,
the difference-in-means estimator is already unbiased; ad-
justment reduces the variance while, in fact, introduc-
ing a small amount of finite-sample bias. Another major
difference between this prior work and ours is the sam-
pling framework: we operate within the Neyman-Rubin
model with fixed potential outcomes for a finite popula-
tion, where the treatment group is sampled without re-
placement, while these papers assume independent sam-
pling from a probability distribution with random error
terms.

Our work is related to the estimation of heterogeneous
or subgroup-specific treatment effects; including interac-
tion terms to allow the imputed individual-level treat-
ment effects to vary according to some linear combination
of covariates. This is pursued in the high-dimensional set-
ting in [19]; this work advocates solving the Lasso on a
reduced set of modified covariates, rather than the full set
of covariate × treatment interactions, and includes exten-
sions to binary outcomes and survival data. The recent
work in [20] considers the problem of designing multiple-
testing procedures for detecting subgroup-specific treat-
ment effects; they pose this as an optimization over test-
ing procedures where constraints are added to enforce
guarantees on type-I error rate and power to detect ef-
fects. Again, the sampling framework in these works is
distinct from ours; they do not use the Neyman-Rubin
model as a basis for designing the methods or investigat-
ing their properties.

7. PAC data illustration and
simulations

We now return to the PAC-man study introduced earlier.
We examine the data in more detail and explore the re-
sults of several adjustment procedures. There were 1013
patients in the PAC-man study: 506 treated (managed
with PAC) and 507 control (managed without PAC, but
retaining the option of using alternative devices). The
outcome variable is quality-adjusted life years (QALYs).
One QALY represents one year of life in full health; in-
hospital death corresponds to a QALY of zero. We have
59 covariates about each individual in the study; we in-
clude all main effects as well as 1113 two-way interactions,
and form a design matrix X with 1172 columns and 1013
rows. See Appendix B for more details on the design
matrix.

The assumptions that underpin the theoretical guaran-

tees of the ÂTELasso estimator are, in practice, not explic-

itly checkable, but we attempt to inspect the quantities
that are involved in the conditions to help readers make
their own judgement. The uniform bounds on the fourth
moments refer to a hypothetical sequence of populations;
these cannot be verified given that the investigator has a
single dataset. However, as an approximation, the fourth
moments of the data can be inspected to ensure that they
are not too large. In this data set, the maximum fourth
moment of the covariates is 37.3, which is indicative of a
heavy-tailed and potentially destabilizing covariate; how-
ever, it occurs in an interaction term not selected by the
lasso, and thus does not influence the estimate3. Check-
ing the conditions for high-dimensional consistency of the
Lasso would require knowledge of the unknown active
set S, and moreover, even if it were known, calculating
the cone invertibility factor would involve an infeasible
optimization. This is a general issue in the theory of
sparse linear high-dimensional estimation. To approxi-
mate these conditions, we use the bootstrap to estimate
the active set of covariates S and the error terms e(a)

and e(b). See the supporting information for more details.
Our estimated S contains 16 covariates and the estimated
second moments of e(a) and e(b) are 11.8 and 12.0, respec-
tively. The estimated maximal covariance δn equals 0.34
and the scaling (s log p)/

√
n is 3.55. While this is not

close to zero, we should mention that the estimation of δn
and (s log p)/

√
n can be unstable and less accurate since

it is based on a subsample of the population. As an ap-
proximation to Condition 5, we examine the largest and
smallest eigenvalues of the sub-Gram matrix (1/n)XT

SXS ,
which are 2.09 and 0.18 respectively. Thus the quantity
in Condition 5 seems reasonably bounded away from zero.

We now estimate the ATE using the unadjusted estima-
tor, the Lasso adjusted estimator and the OLS adjusted
estimator which is computed based on a sub-design ma-
trix containing only the 59 main effects. We also present

results for the two-step estimator ÂTELasso+OLS which
adopts the Lasso to select covariates and then uses OLS
to refit the regression coefficients. See [22–25] for statis-
tical properties of Lasso+OLS estimator in linear regres-

sion model. Let β̂
(a)

be the Lasso estimator defined in 1
(we omit the subscript “Lasso” for the sake of simplicity)

and let Ŝ(a) = {j : β̂
(a)

j 6= 0} be the support of β̂
(a)

. The

Lasso+OLS adjustment vector β̂
(a)
Lasso+OLS for treatment

3The fourth moments of the covariates are shown in Fugure 13 in
Appendix F. The covariates with the largest two fourth moments
(37.3 and 34.9 respectively) are quadratic term interactnew2

and interaction term IMscorerct : systemnew. Neither of them
are selected by the Lasso to do the adjustment.
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group A is defined by

β̂
(a)

Lasso+OLS = arg min
β: βj=0, ∀j /∈Ŝ(a)

1

2nA

∑
i∈A

[ai − āA

−(xi − x̄A)Tβ
]2
.

We can define the Lasso+OLS adjustment vector

β̂
(b)

Lasso+OLS for control group B similarly. Then

ÂTELasso+OLS is given by

ÂTELasso+OLS =
[
āA − (x̄A − x̄)T β̂

(a)

Lasso+OLS

]
−
[
b̄B − (x̄B − x̄)T β̂

(b)

Lasso+OLS

]
.

In the next paragraph and in Algorithm 1 of Appendix
F, we show how we adapt the cross-validation proce-

dure to select the tuning parameter for ÂTELasso+OLS

based on a combined performance of Lasso and OLS, or
cv(Lasso+OLS).

We use the R package “glmnet” to compute the Lasso
solution path and select the tuning parameters λa and λb
by 10-fold Cross Validation (CV). To indicate the method
of selecting tuning parameters, we denote the correspond-
ing estimators as cv(Lasso) and cv(Lasso+OLS) respec-
tively. We should mention that for the cv(Lasso+OLS)
adjusted estimator, we compute the CV error for a given
value of λa (or λb) based on the whole Lasso+OLS proce-
dure instead of just the Lasso estimator (see Algorithm 1
in Appendix F). Therefore, the cv(Lasso+OLS) and the
cv(Lasso) may select different covariates to do the adjust-
ment. This type of cross validation requires more compu-
tation than the cross validation based on just the Lasso
estimator since it needs to compute the OLS estimator
for each fold and each given λa (or λb), but it can give
better prediction and model selection performance.

Figure 2 presents the ATE estimates along with 95%
confidence intervals (CI). The interval lengths are shown
on top of each interval bar. All the methods give confi-
dence intervals containing 0; hence, this experiment failed
to provide sufficient evidence to reject the hypothesis that
PAC did not have an effect on patient QALYs (either
positive or negative). Since the caretakers of patients
managed without PAC retained the option of using less
invasive cardiac output monitoring devices, such an effect
may have been particularly hard to detect in this experi-
ment.

However, it is interesting to note that (see Table 1),
compared with the unadjusted estimator, the OLS ad-
justed estimator causes the ATE estimate to decrease
(from -0.13 to -0.31), and shortens the confidence interval
by about 20%. This is due mainly to the imbalance in the
pre-treatment probability of death, which was highly pre-
dictive of the post-treatment QALYs. The cv(Lasso) ad-
justed estimator yields a comparable ATE estimate and
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Figure 2: ATE estimates (red circles) and 95% confi-
dence intervals (bars) for the PAC data. The numbers
above each bar are the corresponding interval lengths.

confidence interval, but the fitted model is more inter-
pretable and parsimonious than the OLS model: it selects
24 and 8 covariates for treated and control, respectively.
The cv(Lasso+OLS) estimator selects even fewer covari-
ates: 4 and 5 for treated and control, respectively, but
performs a similar adjustment as the cv(Lasso) (see the
comparison of fitted values in Figure 12). We also note
that these adjustments agree with the one performed in
[13], where the treatment effect was adjusted downwards
to −0.27 after stratifying into 4 groups based on predicted
probability of death.

The covariates selected by Lasso for adjustment are
shown in Table 2, where “A·A” denote quadratic term
of the covariate A and “A:B” denote two way interac-
tion between two covariates A and B. Among them, pa-
tient’s age and estimated probability of death (p death),
together with the quadratic term “age·age” and interac-
tions “age:p death” and “p death:mech vent4”, are the
most important covariates for the adjustment. The pa-
tients in control group are slightly older and have slightly
higher risk of death. These covariates are important pre-
dictors of the outcome. Therefore, the unadjusted esti-
mator may overestimate the benefits of receiving PAC.

Since not all the potential outcomes are observed, we
cannot know the true gains of adjustment methods. How-
ever, we can estimate the gains via building a simulated
set of potential outcomes by matching treated units to
control units on observed covariates. We use the match-

4mechanical ventilation at admission
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Table 1: Statistics for the PAC illustration

No. of selected covariates

Methods ÂTE σ̂ATE 95% confidence interval treated control
Unadjusted -0.13 0.081 [-0.69,0.43] - -
OLS -0.31 0.054 [-0.77,0.14] - -
cv(Lasso) -0.33 0.052 [-0.77,0.12] 24 8
cv(Lasso+OLS) -0.36 0.053 [-0.82,0.09] 4 5

Table 2: Selected covariates for adjustment

method treatment covariates

cv(Lasso+OLS) treated age, p death, age·age, age:p death

cv(Lasso+OLS) control age, p death, age·age, age:p death, p death:mech vent

cv(Lasso) treated pac rate, age, p death, age·age, p death·p death, region:im score, region:systemnew,

pac rate:age, pac rate:p death, pac rate:systemnew, im score:interactnew, age:p death,

age:glasgow, age:systemnew, interactnew:systemnew, pac rate:creatinine,

age:mech vent, age:respiratory, age:creatinine, interactnew:mech vent,

interactnew:male, glasgow:organ failure, p death:mech vent, systemnew:male

cv(Lasso) control age, p death, age·age, unitsize:p death, pac rate:systemnew, age:p death,

interactnew:mech vent, p death:mech vent

Covariate definitions: age (patient’s age); p death (baseline probability of death); mech vent (mechanical ventilation
at admission); region (geographic region); pac rate (PAC rate in unit); creatinine, respiratory, glasgow, interactnew,
organ failure, systemnew, im score (various physiological indicators).

ing method described in [21] which gives 1013 observa-
tions with all potential outcomes imputed. We match on
the 59 main effects only. The ATE is −0.29. We then use
this synthetic data set to calculate the biases, standard
deviations (SD) and root-mean square errors (

√
MSE)

of different ATE estimators based on 25000 replicates
of completely randomized experiment which assigns 506
subjects to the treated group and the remainders to the
control group.

Table 3 shows the results. For all the methods, the
bias is substantially smaller (by a factor of 100) than
the SD. The SD and

√
MSE of the OLS adjusted esti-

mator are both 10.2% smaller than those of the unad-
justed estimator, while the cv(Lasso) and cv(Lasso+OLS)
adjusted estimators further improve the SD and

√
MSE

of the OLS adjusted estimator by approximately 4.7%.
Moreover, all these methods provide conservative confi-
dence intervals with coverage probabilities higher than
99%. However, the interval lengths of the OLS, cv(Lasso)
and cv(Lasso+OLS) adjusted estimator are comparable
and are approximately 10% shorter than that of the un-
adjusted estimator. The cv(Lasso+OLS) adjusted esti-
mator is similar to the cv(Lasso) adjusted estimator in
terms of mean squared error, confidence interval length
and coverage probability, but outperforms the latter with
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Figure 3: Selection stability comparison of cv(Lasso)
and cv(Lasso+OLS) for treatment group.
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Figure 4: Selection stability comparison of cv(Lasso)
and cv(Lasso+OLS) for control group.

much fewer and more stable covariates in the adjustment
(see Figures 3 and 4 for the selection frequency of each
covariate for treatment group and control group respec-
tively). We also show in Figure 14 that the sampling
distribution of the estimates is very close to Normal.

We conduct additional simulation studies to evaluate
the finite sample performance of ÂTELasso and compare
it with that of the OLS adjusted estimator and the un-
adjusted estimator. A qualitative analysis of these sim-
ulations yields the same conclusions as presented above;
however, for the sake of brevity, we defer the simulation
details in the supporting information.

8. Discussion

We study the Lasso adjusted average treatment effect
(ATE) estimate under the Neyman-Rubin model for ran-
domization. Our purpose in using the Neyman-Rubin
model was to investigate the performance of the Lasso
under a realistic sampling framework which does not im-
pose strong assumptions on the data. We provide con-
ditions that ensure asymptotic normality, and provide a
Neyman-type estimate of the asymptotic variance which
can be used to construct a conservative confidence in-
terval for the ATE. While we do not require an explicit
generative linear model to hold, our theoretical analysis
requires the existence of latent ‘adjustment vectors’ such
that moment conditions of the error terms are satisfied,
and that the cone invertibility condition of the sample

covariance matrix is satisfied in addition to moment con-
ditions for OLS adjustment as in [7]. Both assumptions
are difficult to check in practice. In our theory, we do not
address whether these assumptions are necessary for our
results to hold, though simulations indicate that the mo-
ment conditions cannot be substantially weakened. As
a by-product of our analysis, we extend Massart’s con-
centration inequality for sampling without replacement,
which is useful for theoretical analysis under the Neyman-
Rubin model. Simulation studies and the real data illus-
tration show the advantage of the Lasso-adjusted estima-
tor in terms of estimation accuracy and model interpre-
tation. In practice, we recommend a variant of Lasso,
cv(Lasso+OLS), to select covariates and perform the ad-
justment, since it gives similar coverage probability and
confidence interval length when compared with cv(Lasso),
but with far fewer covariates selected. In future work, we
plan to extend our analysis to other popular methods in
high-dimensional statistics such as Elastic-Net and ridge
regression, which may be more appropriate for estimating
adjusted ATE under different assumptions.

The main goal of using Lasso in this paper is to re-
duce the variance (and overall mean squared error) of
ATE estimation. Another important task is to estimate
heterogenous treatment effects and provide conditional
treatment effect estimates for subpopulations. When the
Lasso models of treatment and control outcomes are dif-
ferent, both in variables selected and coefficient values,
this could be interpreted as modeling treatment effect
heterogeneity in terms of covariates. However, reducing
variance of the ATE estimate and estimating heteroge-
nous treatment effects have completely different targets.
Targeting heterogenous treatment effects may result in
more variable ATE estimates. Moreover, our simulations
show that the set of covariates selected by the Lasso is
unstable and this may cause problems when interpreting
them as evidence of heterogenous treatment effects. How
best to estimate such effects is an open question that we
would like to study in future research.

9. Materials and Methods

We did not conduct the PAC-man experiment, and we
are analyzing secondary data without any personal iden-
tifying information. As such, this study is exempt from
human subjects review. The original experiments under-
went human subjects review in the UK [2].
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Table 3: Statistics for the PAC synthetic data set

No. of selected covariates

Bias SD
√

MSE Coverage (%) Length treated control
Unadjusted 0.001(0) 0.20(0.02) 0.20(0.02) 99 1.06 - -
OLS 0.002(0) 0.18(0.02) 0.18(0.02) 99 0.95 - -
cv(Lasso) 0.001(0) 0.17(0.02) 0.17(0.02) 99 0.94 25(23) 15(14)
cv(Lasso+OLS) 0.000(0) 0.17(0.02) 0.17(0.02) 99 0.95 6(6) 4(3)
The numbers in parentheses are the corresponding standard errors estimated by using the bootstrap with B = 500
resamplings of the ATE estimates.

Richard Grieve (LSHTM), Sheila Harvey (LSHTM),
David Harrison (ICNARC) and Kathy Rowan (IC-
NARC) for access to data from the PAC-Man CEA
and the ICNARC CMP database. This research is par-
tially supported by NSF grants DMS-11-06753, DMS-
12-09014, DMS-1107000, DMS-1129626, DMS-1209014,
CDS&E-MSS, 1228246DMS-1160319 (FRG), AFOSR
grant FA9550-14-1-0016, NSA Grant H98230-15-1-0040,
the Center for Science of Information (CSoI), an US NSF
Science and Technology Center, under grant agreement
CCF-0939370, the Department of Defense (DoD) for Of-
fice of Naval Research (ONR) grant N00014-15-1-2367
and the National Defense Science & Engineering Grad-
uate Fellowship (NDSEG) Program.

References

[1] Splawa-Neyman J, Dabrowska DM, Speed TP (1990)
On the Application of Probability Theory to Agri-
cultural Experiments. Essay on Principles. Section
9. Statistical Science 5(4):465–472.

[2] Harvey S et al. (2005) Assessment of the clinical ef-
fectiveness of pulmonary artery catheters in man-
agement of patients in intensive care (PAC-Man): a
randomised controlled trial. Lancet 366(9484):472–
477.

[3] Dalen JE (2001) The Pulmonary Artery Catheter —
Friend, Foe, or Accomplice? Jama 286(3):348–350.

[4] Connors AF et al. (1996) The effectiveness of right
heart catheterization in the initial care of critically
III patients. Jama 276(11):889–897.

[5] Permutt T (1990) Testing for imbalance of covari-
ates in controlled experiments. Statistics in medicine
9(12):1455–1462.

[6] Tibshirani R (1994) Regression Selection and Shrink-
age via the Lasso. Journal of the Royal Statistical
Society B 58:267–288.

[7] Lin W (2013) Agnostic notes on regression adjust-
ments to experimental data: reexamining Freed-
man’s critique. The Annals of Applied Statistics
7:295–318.
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A. Simulation

In this section we carry out simulation studies to evaluate

the finite sample performance of ÂTELasso estimator. We

also present results for the ÂTEOLS estimator when p < n

and the two-step estimator ÂTELasso+OLS.
We use the R package “glmnet” to compute the Lasso

solution path. We select the tuning parameters λa
and λb by 10-fold Cross Validation (CV) and denote
the corresponding adjusted estimators as cv(Lasso) and
cv(Lasso+OLS) respectively. We should mention that
for the cv(Lasso+OLS) adjusted estimator, we compute
the CV error for a given value of the λa (or λb) based

on the whole Lasso+OLS estimator instead of the Lasso
estimator, see Algorithm 1 for details. Therefore, the
cv(Lasso+OLS) adjusted estimator and the cv(Lasso)
adjusted estimator may select different covariates to
do the adjustment. This type of cross validation for
cv(Lasso+OLS) requires more computation effort than
the cross validation based on just the Lasso estimator
since it needs to compute the OLS estimator for each fold
and for each λa (or λb), but it can give better prediction
and covariates selection performance.

The potential outcomes ai and bi are generated from
the following nonlinear model: for i = 1, ..., n,

ai =

s∑
j=1

xijβ
(a1)
j + exp

 s∑
j=1

xijβ
(a2)
j

+ ε
(a)
i ,

bi =

s∑
j=1

xijβ
(b1)
j + exp

 s∑
j=1

xijβ
(b2)
j

+ ε
(b)
i ,

where ε
(a)
i and ε

(b)
i are independent error terms. We set

n = 250, s = 10, p = 50 and 500. For p = 50, we can
compute OLS estimator and compare it with the Lasso.
The covariates vector xi is generated from a multivariate
normal distribution N (0,Σ). We consider two different
Toeplitz covariance matrices Σ which control the correla-
tion among the covariates:

Σii = 1; Σij = ρ|i−j| ∀i 6= j,

where ρ = 0, 0.6. The true coefficients β
(a1)
j , β

(a2)
j , β

(b1)
j ,

β
(b2)
j are generated independently according to

β
(a1)
j ∼ t3; β

(a2)
j ∼ 0.1 ∗ t3, j = 1, ..., s,

β
(b1)
j ∼ β(a1)

j + t3; β
(b2)
j ∼ β(a2)

j + 0.1 ∗ t3, j = 1, ..., s,

where t3 denotes the t distribution with three degrees of
freedom. This ensures that the treatment effects are not
not constant across individuals, and that the linear model

does not hold in this simulation. The error terms ε
(a)
i and

ε
(b)
i are generated according to the following linear model

with some hidden covariates zi:

ε
(a)
i =

s∑
j=1

zijβ
(a1)
j + ε̃

(a)
i ,

ε
(b)
i =

s∑
j=1

zijβ
(b1)
j + ε̃

(b)
i ,

where ε̃
(a)
i and ε̃

(b)
i are drawn independently from stan-

dard normal distribution. The vector zi is independent
of xi and also drawn independently from the multivari-
ate normal distribution N (0,Σ). The values of xi, β

(a1),
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β(a2), β(b1), β(b2), zi, ε̃
(a)
i , ε̃

(b)
i , ai and bi are generated

once and then kept fixed.

After the potential outcomes are generated, a com-
pletely randomized experiment is simulated 25000 times,
assigning nA = 100, 125, 150 subjects to treatment A and
the remainder to control B. There are 12 different combi-
nations of (p, ρ, nA) in total.

Figures 8, 9, 10 show the boxplot of different ATE es-
timators with their standard deviations (computed from
25000 replicates of randomized experiments) presented on
top of each box. Regardless of whether the design is bal-
anced (nA = 125) or not (nA = 100, 150), the regression
based estimators have much smaller variances and than
that of the unadjusted estimator and therefore improve
the estimation precision.

To further compare the performance of these estima-
tors, we present the bias, the standard deviation (SD)
and the root-mean square error (

√
MSE) of the estimates

in Table 4. Bias is reported as the absolute difference
from the true treatment effect. We find that the bias of
each method is substantially smaller (more than 10 times
smaller) than the SD. The cv(Lasso) and cv(Lasso+OLS)
adjusted estimators perform similar in terms of SD and√

MSE: reducing those of the OLS adjusted estima-
tor and the unadjusted estimator by 10% − 15% and
15% − 31% respectively. We also compare the number
of selected covariates by cv(Lasso) and cv(Lasso+OLS)
for treatment group and control group separately, see Ta-
ble 5. It is easy to see that the cv(Lasso+OLS) adjusted
estimator uses many fewer (more than 44%) covariates
in the adjustment to obtain similar improvement of SD
and

√
MSE of ATE estimate as the cv(Lasso) adjusted

estimator. Moreover, we find that the covariates selected
by the cv(Lasso+OLS) are more stable across different
realizations of treatment assignment than the covariates
selected by the cv(Lasso). Overall, the cv(Lasso+OLS)
adjusted, the cv(Lasso) adjusted, the OLS adjusted and
the unadjusted estimators perform from best to worst.

We move now to study the finite sample performance
of Neyman-type conservative variance estimates. For
each simulation example and each one of the 25000 com-
pletely randomized experiments, we calculate the ATE

estimates (ÂTE) and the Neyman variance estimates (σ̂)

and then form the 95% confidence intervals [ÂTE−1.96 ·
σ̂/
√
n, ÂTE + 1.96 · σ̂/

√
n]. Figures 5, 6, 7 present the

boxplot of the interval length with the coverage proba-
bility noted on top of each box for the unadjusted, OLS
adjusted (only computed when p = 50), cv(Lasso) ad-
justed and cv(Lasso+OLS) adjusted estimators. More
results are showed in Table 6. We find that all the con-
fidence intervals for the unadjusted estimator are conser-
vative. The cv(Lasso) adjusted and the cv(Lasso+OLS0
adjusted estimators perform very similar: although their

coverage probability (at least 92%) may be slightly less
than the pre-assigned confidence level (95%), their mean
interval length is much shorter (26% − 37%) than that
of the unadjusted estimator. The OLS adjusted esti-
mator has comparable interval length with the cv(Lasso)
and cv(Lasso+OLS) adjusted estimator, but has slightly
worse coverage probability (90%− 93%).

To further investigate how good the Neyman standard
deviation (SD) estimate is, we compare them in Figure 11
with the “true” SD presented in Table 4 (the SD of the
ATE estimates over 25000 randomized experiments). We
find that Neyman SD estimate is very conservative for the
unadjusted estimator (its mean is 5% − 14% larger than
the “true” SD); while for the OLS adjusted estimator, the
mean of Neyman SD estimate can be 6%− 100% smaller
than the “true” SD which may be because of over-fitting.
For the cv(Lasso) and cv(Lasso+OLS) adjusted estima-
tor, the mean of Neyman SD estimator is within 1±7% of
the “true” SD. Although the Neyman variance estimate
is asymptotically conservative, the finite sample behavior
of the Neyman SD estimate can be progressive for the
regression-based adjusted estimator. However, if we in-
crease the sample size n to 1000, almost all the confidence
intervals are conservative.

We conduct more simulation examples to evaluate the
conditions assumed for asymptotic normality of the Lasso
adjusted estimator. We use the same simulation setup as
above, but for simplicity, we generate the potential out-
comes from linear model (set β(a2) = β(b2) = 0) and re-
move the effects of the hidden covariates zi in generating

the error terms ε
(a)
i and ε

(b)
i and set ρ = 0, nA = 125.

We find that the distribution of the cv(Lasso) adjusted
estimator may be non-normal when:

(1). The covariates are generated from Gaussian distri-
bution and the error terms do not satisfy second mo-
ment condition, e.g., being generated from t distri-
bution with one degree of freedom, see the upper two
subplots of Figure 1 (in the main text) for the his-
tograms of unadjusted the cv(Lasso) adjusted esti-
mators (the corresponding p-values of Kolmogorov–
Smirnov testing for normality are less than 2.2e−16).

(2). The covariates do not have bounded fourth moments,
e.g., being generated from t distribution with three
degrees of freedom, see the lower two subplots of Fig-
ure 1 (in the main text) for the histograms of unad-
justed the cv(Lasso) adjusted estimators (again, the
corresponding p-values of Kolmogorov–Smirnov test-
ing for normality are less than 2.2e− 16).

These findings indicate that our moment condition (Con-
dition 2 and Remark 1) cannot be dramatically weak-
ened. However, we also find that the cv(Lasso) adjusted
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estimator still has smaller SD and
√

MSE than the unad-
justed estimator even when these moment conditions do
not hold.

B. The design matrix of the PAC
data

In the PAC data, there are 59 covariates (main effects)
including 50 indicators which may be correlated with the
outcomes. One of the main effects (called interactnew)
has heavy tail, so we do the transform: x → log(|x| + 1)
to make it look like normal distributed. We then cen-
tralize and standardize the non-indicator covariates. The
quadratic terms (9 in total) of non-indicator covariates
and two-way interactions between main effects (1711
in total) may also contribute to predict the potential
outcomes, so we included them in the design matrix.
The quadratic terms and the interactions between non-
indicator covariates and the interactions between indica-
tor covariates and non-indicator covariates are also cen-
tered and standardized. Some of the interactions are ex-
actly the same as other effects and we only retain one of
them. We also remove the interactions which are highly
correlated (with correlation larger than 0.95) with the
main effects and remove the indicators with very sparse
entries (where the number of 1’s is less than 20). Finally,
we form a design matrix X with 1172 columns (covari-
ates) and 1013 rows (subjects).

C. Estimation of constants in the
conditions

Let S(a) = {j : β
(a)
j 6= 0} and S(b) = {j : β

(b)
j 6= 0}

denote the sets of relevant covariates for treatment group
and control group respectively. Denote S = S(a)

⋃
S(b) =

{j : β
(a)
j 6= 0 or β

(b)
j 6= 0}. We use bootstrap to get an

estimation of the relevant covariates sets S(a), S(b) and
then the approximation errors e(a) and e(b) are estimated
by regressing the observed potential outcomes a and b on
the covariates in S respectively. We only present how to
estimate S(a) and e(a) in detail and the estimation of S(b)

and e(b) are similar.

Let A, B be the set of treated subjects (using
PAC) and control subjects (without using PAC) re-
spectively. Denote ai, i ∈ A the potential outcomes
(quality-adjusted life years (QALYs)) under treatment
and xi ∈ R1172 the covariates vector of the ith sub-
ject. For each d = 1, ..., 1000, we draw a bootstrap sam-
ple {(a∗i (d), x∗i (d)) : i ∈ A} with replacement from the
data points {(ai, xi) : i ∈ A}. Then computing the Las-

soOLS(CV) adjusted vector β̂(d) based on each bootstrap

sample {(a∗i (d), x∗i (d)) : i ∈ A}. Let τj be the selection

fraction of non-zero β̂j(d) in the 1000 bootstrap estima-

tors, i.e., τj = (1/1000)
∑1000
d=1 I{β̂j(d)6=0}, where I is the

indicator function. We form the relevant covariates S(a)

by the covariates whose selection fraction are larger than
0.5: S(a) = {j : τj > 0.5}.

To estimate the approximation error e(a), we regress ai
on the relevant covariates xij , j ∈ S(a) and compute OLS

estimate and the corresponding residual. That is, let T (a)

denote the complement set of S(a),

β
(a)
OLS = arg min

β: βj=0, ∀j∈T (a)

1

2nA

∑
i∈A

(
ai − āA − (xi − x̄A)Tβ

)2
.

e
(a)
i = ai − āA − (xi − x̄A)Tβ

(a)
OLS, i ∈ A.

The maximal covariance δn is estimated as:

max

{
max
j

∣∣∣∣∣ 1

nA

∑
i∈A

(xij − (x̄)j)
(
e
(a)
i − ē

(a)
A

)∣∣∣∣∣ ,
max
j

∣∣∣∣∣ 1

nB

∑
i∈B

(xij − (x̄)j)
(
e
(b)
i − ē

(b)
B

)∣∣∣∣∣
}
.

D. Proofs of Theorem 1, 2, 3 and
Corollary 1

In this section, we will prove Theorem 1 - 3 and Corollary
1 under weaker sparsity conditions.

Def inition 3 We define an approximate sparsity mea-
sure. Given the regularization parameter λa, λb and β(a)

and β(b), the sparsity measures for treatment and control

groups, s
(a)
λa

and s
(b)
λb

are defined as

s
(a)
λa

=

p∑
j=1

min

{
|β(a)
j |
λa

, 1

}
, s

(b)
λb

=

p∑
j=1

min

{
|β(b)
j |
λb

, 1

}
,

(24)

respectively. We will allow s
(a)
λa

and s
(b)
λb

to grow with n,
though the notation does not explicitly show this. Note
that this is weaker than strict sparsity, as it allows β(a)

and β(b) to have many small non-zero entries.

Condition (*). Suppose there exist β(a), β(b), λa and
λb such that the conditions 1, 2, 3 and the following state-
ments 1, 2, 3 hold simultaneously.

• Statement 1. Decay and scaling. Let sλ =

max
{
s
(a)
λa
, s

(b)
λb

}
,

δn = o

(
1

sλ
√

log p

)
, (25)

(sλ log p)/
√
n = o(1). (26)
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• Statement 2. Cone invertibility factor. Define the
Gram matrix as Σ = n−1

∑n
i=1(xi − x̄)(xi − x̄)T :

There exist constants C > 0 and ξ > 1 not depending
on n, such that

‖hS‖1 ≤ Csλ‖Σh‖∞, ∀h ∈ C, (27)

with C = {h : ‖hSc‖1 ≤ ξ‖hS‖1}, and

S = {j : |β(a)
j | > λa or |β(b)

j | > λb}. (28)

• Statement 3. Let τ = min
{

1/70, (3pA)2/70, (3 −
3pA)2/70

}
. For constants 0 < η < ξ−1

ξ+1 and 0 <
M < ∞, assume the regularization parameters of
the Lasso belong to the sets

λa ∈ (
1

η
,M ]×

(
2(1 + τ)L1/2

pA

√
2 log p

n
+ δn

)
, (29)

λb ∈ (
1

η
,M ]×

(
2(1 + τ)L1/2

pB

√
2 log p

n
+ δn

)
. (30)

It is easy to verify that Condition (*) is implied by
conditions 1 - 6. In the following, we will prove Theorem
1 - 3 and Corollary 1 under the weaker Condition (*).

For ease of notation, we will omit the subscript of β̂
(a)

Lasso,

β̂
(b)

Lasso, sλ, s
(a)
λa

and s
(b)
λb

from now on. Moreover, we can
assume, without loss of generality, that

ā = 0, b̄ = 0, x̄ = 0. (31)

Otherwise, we can consider ăi = ai − ā, b̆i = bi − b̄ and
x̆i = xi − x̄. Then, ATE = ā − b̄ = 0 and the definition

of ÂTELasso becomes

ÂTELasso =
[
āA − (x̄A)T β̂

(a)
]
−
[
b̄B − (x̄B)T β̂

(b)
]
. (32)

We will rely heavily on the following Massart concen-
tration inequality for sampling without replacement.

Lemma 1 Let {zi, i = 1, ..., n} be a finite population of
real numbers. Let A ⊂ {i, . . . , n} be a subset of deter-
ministic size |A| = nA that is selected randomly without
replacement. Define pA = nA/n, σ

2 = n−1
∑n
i=1(zi−z̄)2.

Then, for any t > 0,

P (z̄A − z̄ ≥ t) ≤ exp

{
− pAnAt

2

(1 + τ)2σ2

}
, (33)

with τ = min
{

1/70, (3pA)2/70, (3− 3pA)2/70
}

.

Remark. Massart showed in his paper [26] that for sam-
pling without replacement, the following concentration in-
equality holds:

P (z̄A − z̄ ≥ t) ≤ exp

{
−pAnAt

2

σ2

}
.

His proof required that n/nA must be an integer. We
extend the proof to allow n/nA to be a non-integer but
with a slightly larger constant factor (1 + τ)2.

Proof. Assume z̄ = 0 without loss of generality. For nA ≤
n/2, let m ≥ 2 and r ≥ 0 be integers satisfying n−nAm =
r < nA. Let u ≥ 0. We first prove that

E exp

(
u
∑
i∈A

zi

)

≤ E exp

(
uδ
∑
i∈B

zi/{m(m+ 1)}+ u2nσ2/4

) (34)

for a random subsetB ⊂ {1, . . . , n} of fixed size |B| ≤ n/2
and a certain fixed δ ∈ {−1, 1}. Let P1 be the proba-
bility under which {i1, . . . , in} is a random permutation
of {1, . . . , n}. Given {i1, . . . , in}, we divide the sequence
into consecutive blocks B1, . . . , BnA with |Bj | = m+1 for
j = 1, . . . , r and |Bj | = m for j = r+ 1, ..., nA. Let z̄k be
the mean of {zi : i ∈ Bk} and P2 be a probability condi-
tionally on {i1, . . . , in} under which wk is a random ele-
ment of {zi : i ∈ Bk}, k = 1, . . . , nA. Then {w1, . . . , wnA}
is a random sample from {z1, . . . , zn} without replace-
ment under P = P1P2. Let ∆k = maxi∈Bk zi−mini∈Bk zi
and denote E2 the expectation under P2. The Hoeffding
inequality gives

E2 exp

(
u

nA∑
k=1

wk

)
≤ exp

(
u

nA∑
k=1

z̄k + (u2/8)

nA∑
k=1

∆2
k

)
.

(35)
As ∆2

i ≤ 2
∑
i∈Bk(zi − z̄k)2 ≤ 2

∑
i∈Bk z

2
i ,

E2 exp

(
u

nA∑
k=1

wk

)
≤ exp

(
u

nA∑
k=1

z̄k + u2nσ2/4

)
(36)

Let B = ∪rk=1Bk. As z̄ = 0,

nA∑
k=1

z̄k =
∑
i∈B

zi/{m(m+ 1)}. (37)

This yields 34 with δ = 1 when |B| ≤ n/2. Otherwise,
34 holds with δ = −1 when B is replaced by Bc, as∑
i∈B zi = −

∑
i∈Bc zi due to z̄ = 0.

Now, as m(m + 1) ≥ 6, repeated application of 34
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yields

E exp

(
u
∑
i∈A

zi

)

≤ E exp

[
uδ′

∑
i∈B′

zi/{m(m+ 1)m′(m′ + 1)}

+
(
1 + {m(m+ 1)}−2

)
u2nσ2/4

]
≤ exp

[(
1 + {m(m+ 1)}−2(1 + 1/36 + 1/362+

· · · ))u2nσ2/4
]

= exp
[(

1 + (36/35){m(m+ 1)}−2
)
u2nσ2/4

]
≤ exp

[
(1 + τ)

2
u2nσ2/4

]
(38)

with τ = (18/35){m(m + 1)}−2. The upper bound for τ
follows from 2 ≤ m < n/nA < m+ 1.

As z̄ = 0, we also have

E exp

(
u
∑
i∈A

zi

)
≤ exp

[
(1 + τ)

2
u2nσ2/4

]
(39)

for nA > n/2. This yields 33 via the usual

P {z̄A − z̄ > t}
≤ exp

[
−ut+ (1 + τ)2u2nσ2/(4n2A)

]
= exp

[
−2

pAnAt
2

(1 + τ)2σ2
+

pAnAt
2

(1 + τ)2σ2

]
(40)

with u = 2pAnAt/{σ(1 + τ)}2.

D.1. Proof of Theorem 1

Proof. Recall the decompositions of the potential out-
comes:

ai = ā+ (xi − x̄)Tβ(a) + e
(a)
i = xTi β

(a) + e
(a)
i , (41)

bi = b̄+ (xi − x̄)Tβ(b) + e
(b)
i = xTi β

(b) + e
(b)
i . (42)

If we define h(a) = β̂
(a)
− β(a), h(b) = β̂

(b)
− β(b), by

substitution, we have

√
n(ÂTELasso −ATE)

=
√
n
[
ē
(a)
A − ē

(b)
B

]
︸ ︷︷ ︸

∗

−
√
n
[
(x̄A)

T
h(a) − (x̄B)

T
h(b)

]
︸ ︷︷ ︸

∗∗

.

We will analyze these two terms separately, showing
that (∗) is asymptotically normal with mean 0 and vari-
ance given by 17, and that (∗∗) is op (1).

Asymptotic normality of (∗) follows from the Theorem
1 in [11] with a and b replaced by e(a) and e(b) respectively.
To bound (∗∗), we will apply Hölder inequality to each

of the terms. We will focus on the term involving the
treatment group A, but exact same analysis is applied to
the control group B. We have the bound∣∣∣(x̄A)

T
h(a)

∣∣∣ ≤ ‖x̄A‖∞ ‖h(a)‖1. (43)

We will bound the two terms on the right hand side of
43 by the following Lemma 2 and Lemma 3, respectively.

Lemma 2 Under the moment condition of [6], if we let

cn = (1+τ)L1/4

pA

√
2 log p
n , then as n→∞,

P (‖x̄A‖∞ > cn)→ 0.

Thus, ‖x̄A‖∞ = Op

(√
log p
n

)
.

Lemma 3 Assume the conditions of Theorem 1 hold.

Then ‖h(a)‖1 = op

(
1√
log p

)
.

The proofs of these two Lemmas are below. Using
these two Lemmas, it is easy to show that (∗∗)=

√
n ·

Op

(√
log p
n

)
· op

(
1√
log p

)
= op (1).

D.2. Proof of Corollary 1

Proof. By Theorem 1 in [11], the asymptotic variance of√
n ÂTEunadj is 1−pA

pA
limn→∞ σ2

a + pA
1−pA limn→∞ σ2

b +
2 limn→∞ σab, so the difference is

1− pA
pA

lim
n→∞

(
σ2
e(a) − σ

2
a

)
+

pA
1− pA

lim
n→∞

(
σ2
e(b) − σ

2
b

)
+ 2 lim

n→∞
(σe(a)e(b) − σab) .

We will analyze these three terms separately. Since Xβ(a)

and Xβ(b) are the orthogonal projections of a and b onto
the same subspace, we have

(Xβ(a))T e(a) = (Xβ(a))T e(b)

= (Xβ(b))T e(a) = (Xβ(b))T e(b) = 0.

Simple calculations yield

σ2
e(a) − σ

2
a = ||e(a)||22 − ||a||22 = −||Xβ(a)||22,

σ2
e(b) − σ

2
b = ||e(b)||22 − ||b||22 = −||Xβ(b)||22,

σe(a)e(b)−σab = (e(a))T (e(b))−aT b = −(Xβ(a))T (Xβ(b)).

Combining the above three equalities, we obtain the corol-
lary.

17



D.3. Proof of Theorem 2

Proof. To prove Theorem 2, it is enough to show that

σ̂2
e(a)

p→ lim
n→∞

σ2
e(a) , (44)

σ̂2
e(b)

p→ lim
n→∞

σ2
e(b) . (45)

We will only prove the statement 44 and omit the proof
of the statement 45 since it is very similar.

We first state the following two lemmas. Lemma 4
bounds the number of selected covariates (covariates with
a nonzero coefficient), while Lemma 5 establishes condi-
tions under which the subsample mean (without replace-
ment) converges in probability to the population mean.

Lemma 4 Under the conditions in Theorem 2, there ex-
ists a constant C, such that the following holds with prob-
ability going to 1:

ŝ(a) ≤ Cs; ŝ(b) ≤ Cs. (46)

The proof of Lemma 4 can be found below.

Lemma 5 Let {zi, i = 1, ..., n} be a finite population of
real numbers. Let A ⊂ {i, . . . , n} be a subset of deter-
ministic size |A| = nA that is selected randomly without
replacement. Suppose that the population mean of the zi
has a finite limit and that there exist constants ε > 0 and
L <∞ such that

1

n

n∑
i=1

|zi|1+ε ≤ L. (47)

If nA
n → pA ∈ (0, 1), then

z̄A
p→ lim
n→∞

z̄. (48)

By definition 21 and simple calculations,

σ̂2
e(a)

=
1

nA − df (a)
∑
i∈A

(
ai − āA − (xi − x̄A)T β̂

(a)
)2

=
1

nA − df (a)
∑
i∈A

(
ai − āA − (xi − x̄A)Tβ(a)

+(xi − x̄A)T (β(a) − β̂
(a)

)
)2

=
1

nA − df (a)
∑
i∈A

(
ai − xTi β

(a) − (āA − (x̄A)Tβ(a))

+(xi − x̄A)T (β(a) − β̂
(a)

)
)2

=
nA

nA − df (a)
1

nA

∑
i∈A

(
e
(a)
i − ē

(a)
A + (xi − x̄A)T

(β(a) − β̂
(a)

)
)2

=
nA

nA − df (a)

{
1

nA

∑
i∈A

(
e
(a)
i − ē

(a)
A

)2
+

1

nA

∑
i∈A(

(xi − x̄A)T (β(a) − β̂
(a)

)
)2}

+
nA

nA − df (a){
1

nA

∑
i∈A

(e
(a)
i − ē

(a)
A )(xi − x̄A)T (β(a) − β̂

(a)
)

}
.

The second to last equality is due to the decomposition
of potential outcome a:

ai = xTi β
(a) + e

(a)
i ; āA = (x̄A)Tβ(a) + ē

(a)
A .

It is easy to see that

1

nA

∑
i∈A

(
e
(a)
i − ē

(a)
A

)2
=

1

nA

∑
i∈A

(e
(a)
i )2 − (ē

(a)
A )2. (49)

By the 4th moment condition on the approximation error
e(a) (see 7), and applying Lemma 5 we get

1

nA

∑
i∈A

(e
(a)
i )2

p→ lim
n→∞

σ2
e(a) ; ē

(a)
A

p→ lim
n→∞

ē(a) = 0.

Therefore,

1

nA

∑
i∈A

(
e
(a)
i − ē

(a)
A

)2 p→ lim
n→∞

σ2
e(a) . (50)
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Simple algebra operations give

1

nA

∑
i∈A

(
(xi − x̄A)T (β(a) − β̂

(a)
)
)2

= (β(a) − β̂
(a)

)T

[
1

nA

∑
i∈A

(xi − x̄A)(xi − x̄A)T

]

(β(a) − β̂
(a)

)

≤ ||β(a) − β̂
(a)
||21 · ||

1

nA

∑
i∈A

(xi − x̄A)(xi − x̄A)T ||∞.

(51)

We next show that 51 converges to 0 in probability. By
Lemma 3 and Lemma 7, we have

||β(a) − β̂
(a)
||1 = ‖h(a)‖1 = op

(
1√

log p

)
, (52)

|| 1

nA

∑
i∈A

(xi − x̄A)(xi − x̄A)T ||∞ = Op(1). (53)

Therefore,

1

nA

∑
i∈A

(
(xi − x̄A)T (β(a) − β̂

(a)
)
)2

p→ 0. (54)

By Cauchy-Schwarz inequality,

| 1

nA

∑
i∈A

(e
(a)
i − ē

(a)
A )(xi − x̄A)T (β(a) − β̂

(a)
)|

≤

[
1

nA

∑
i∈A

(
e
(a)
i − ē

(a)
A

)2] 1
2

·

[
1

nA

∑
i∈A

(
(xi − x̄A)T (β(a) − β̂

(a)
)
)2] 1

2

(55)

which converges to 0 in probability because of 50 and 54.

By Lemma 4 and Condition 4, we have

nA
nA − df (a)

=
nA

nA − ŝ(a) − 1

p→ 1. (56)

Combining 50, 54, 55 and 56, we conclude that

σ̂2
e(a)

p→ lim
n→∞

σ2
e(a) .

The remaining part of the proof is to study the differ-
ence between the conservative variance estimate and the

true asymptotic variance:(
1

pA
lim
n→∞

σ2
e(a) +

1

1− pA
lim
n→∞

σ2
e(b)

)
−
(

1− pA
pA

lim
n→∞

σ2
e(a) +

pA
1− pA

lim
n→∞

σ2
e(b) + 2 lim

n→∞
σe(a)e(b)

)
= lim

n→∞
σ2
e(a) + lim

n→∞
σ2
e(b) − 2 lim

n→∞
σe(a)e(b)

= lim
n→∞

σ2
e(a)−e(b)

= lim
n→∞

1

n

n∑
i=1

(
ai − bi − xTi (β(a) − β(b))

)2
. (57)

D.4. Proof of Theorem 3

Proof. By Lemma 4, max (ŝ(a), ŝ(b)) = op(min (nA, nB)).
Therefore, (σ̂2

e(a)
, σ̂2
e(b)

) and ((σ̂∗)2
e(a)

, (σ̂∗)2
e(b)

) have the
same limits. The conclusion follows from Theorem 2.

E. Proofs of Lemmas

In this section, we will drop the superscript on h, e and
β̂ and focus on the proof for treatment group A, as the
same analysis can be applied to control group B.

E.1. Proof of Lemma 2

Proof. Let cn = (1+τ)L1/4

pA

√
2 log p
n . By the union bound,

P (‖x̄A‖∞ > cn) = P

(
max

j=1,...,p

∣∣∣∣∣ 1

nA

∑
i∈A

xij

∣∣∣∣∣ > cn

)

≤
p∑
j=1

P

(∣∣∣∣∣ 1

nA

∑
i∈A

xij

∣∣∣∣∣ > cn

)
.

(58)

By Cauchy-Schwarz inequality, we have

1

n

n∑
i=1

x2ij ≤

(
1

n

n∑
i=1

x4ij

) 1
2
(

1

n

n∑
i=1

12

) 1
2

≤
√
L. (59)

Substituting the concentration inequality 33 into 58,

P (‖x̄A‖∞ > cn) ≤ 2 exp

{
log p− pAnAc

2
n

(1 + τ)2L1/2

}
= 2 exp {− log p} → 0.

E.2. Proof of Lemma 3

Proof. We start with the KKT condition, which charac-
terizes the solution to the Lasso. Recall the definition of
the Lasso estimator β̂:

β̂ = arg min
β

1

2nA

∑
i∈A

(
ai − āA − (xi − x̄A)Tβ

)2
+λa ‖β‖1 .
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The KKT condition for β̂ is

1

nA

∑
i∈A

(xi − x̄A)
(
ai − āA − (xi − x̄A)T β̂

)
= λaκ, (60)

where κ is the subgradient of ||β||1 taking value at β = β̂,
i.e.,

κ ∈ ∂||β||1
∣∣∣β=β̂ with

{
κj ∈ [−1, 1] for j s.t. β̂j = 0

κj = sign(β̂j) otherwise

(61)

Substituting ai by the decomposition 3, 60 becomes

1

nA

∑
i∈A

(xi − x̄A)(xi − x̄A)T (β − β̂)

+
1

nA

∑
i∈A

(xi − x̄A)(ei − ēA) = λaκ.

(62)

Multiplying both sides of 62 by −hT = (β − β̂)T , we
have

1

nA

∑
i∈A

(
(xi − x̄A)Th

)2 − hT
1

nA

∑
i∈A

(xi − x̄A)(ei − ēA)

= λa(β − β̂)Tκ ≤ λa
(
‖β‖1 − ‖β̂‖1

)
where the last inequality holds because

βTκ ≤ ||β||1||κ||∞ ≤ ||β||1 and β̂
T
κ = ||β̂||1.

Rearranging, and applying Hölder’s inequality, we have

1

nA

∑
i∈A

(
(xi − x̄A)Th

)2
≤ λa

(
‖β‖1 − ‖β̂‖1

)
+ hT

1

nA

∑
i∈A

(xi − x̄A)(ei − ēA)

≤ λa
(
‖β‖1 − ‖β̂‖1

)
+ ‖h‖1

∥∥∥∥∥ 1

nA

∑
i∈A

(xi − x̄A)(ei − ēA)

∥∥∥∥∥
∞︸ ︷︷ ︸

∗

To control the term (∗), we define the event L =
{∗ ≤ ηλa}. The following Lemma 6 shows that, with λa
defined appropriately, L holds with probability approach-
ing 1. We will prove this Lemma later.

Lemma 6 Define

L =
{∥∥∥ 1

nA

∑
i∈A(xi − x̄A)(ei − ēA)

∥∥∥
∞
≤ ηλa

}
.

Then under the conditions of Theorem 1, P (L)→ 1.

On L
1

nA

∑
i∈A

(
(xi − x̄A)Th

)2 ≤ λa (‖β‖1 − ‖β̂‖1 + η ‖h‖1
)
.

(63)

By substituting the defiition of h, and several applications
of the triangle inequality, we have

‖β‖1 − ‖β̂‖1 ≤ ‖hS‖1 − ‖hSc‖1 + 2 ‖βSc‖1 .

Therefore,

1

nA

∑
i∈A

(
(xi − x̄A)Th

)2
≤ λa (‖hS‖1 − ‖hSc‖1 + 2 ‖βSc‖1 + η ‖h‖1)

≤ λa ((η − 1) ‖hSc‖1 + (1 + η) ‖hS‖1 + 2 ‖βSc‖1) .

Because 1
nA

∑
i∈A

(
(xi − x̄A)Th

)2 ≥ 0, we obtain

(1− η) ‖hSc‖1
≤ (1 + η) ‖hS‖1 + 2 ‖βSc‖1 ≤ (1 + η) ‖hS‖1 + 2sλa.

(64)

where the last inequality holds because of the definition
of s in 24 and S in 28.

Consider the following two cases:
(I) If (1 + η)‖hS‖1 + 2sλa ≥ (1− η)ξ‖hS‖1 then by 64,

‖h‖1 = ‖hS‖1 + ‖hSc‖1

≤
(

1 + η

1− η
+ 1

)
‖hS‖1 +

2sλa
1− η

≤ 2sλa
1− η

(
2

(1− η)ξ − (1 + η)
+ 1

)
.

By the definition of λa and the scaling assumptions 25,

26, we have that sλa = o
(

1√
log p

)
.

(II) If (1 +η)‖hS‖1 + 2sλa < (1−η)ξ‖hS‖1 then by 64
we have ‖hSc‖1 ≤ ξ‖hS‖1. Applying the cone invertibil-
ity condition on the design matrix 27,

‖h‖1 = ‖hS‖1 + ‖hSc‖1

≤ (1 + ξ)‖hS‖1 ≤ (1 + ξ)Cs

∥∥∥∥ 1

n
XTXh

∥∥∥∥
∞

(65)

Before applying this inequality we will revisit the KKT
condition 61, but this time we will take the l∞-norm,
yielding∥∥∥∥∥ 1

nA

∑
i∈A

(xi − x̄A)(xi − x̄A)Th

∥∥∥∥∥
∞

≤ λa +

∥∥∥∥∥ 1

nA

∑
i∈A

(xi − x̄A)(ei − ēA)

∥∥∥∥∥
∞

≤ (1 + η)λa,

(66)

where the latter inequality holds on the set L. The final
step is to control the deviation of the subsampled covari-
ance matrix from the population covariance matrix, so
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that we can apply 65. We define another event with con-

stant C1 = 2(1+τ)L1/2

pA

M =

{∥∥∥∥∥ 1

nA

∑
i∈A

(xi − x̄A)(xi − x̄A)T − 1

n
XTX

∥∥∥∥∥
∞

≤ C1

√
log p

n

}
Lemma 7 Assume stability of treatment assignment
probability condition 1 and moment condition 6 hold.
Then P (M)→ 1.

We will prove Lemma 7 later. Continuing our inequal-
ities, on the event L ∩M,

s

∥∥∥∥ 1

n
XTXh

∥∥∥∥
∞

≤C1s

√
log p

n
‖h‖1 + s

∥∥∥∥∥ 1

nA

∑
i∈A

(xi − x̄A)(xi − x̄A)Th

∥∥∥∥∥
∞

≤o(1) ‖h‖1 + s(1 + η)λa,

where we have applied the scaling assumption 26 and 66
in the second line. Hence, by 65,

‖h‖1 ≤ (1 + ξ)C [o(1) ‖h‖1 + s(1 + η)λa] .

Again, applying the scaling assumptions 25 and 26, we

get ‖h‖1 = op

(
1√
log p

)
.

E.3. Proof of Lemma 4

Proof. In the proof of Lemma 3, we have shown that, on
L defined in Lemma 6,

1

nA

∑
i∈A

(
(xi − x̄A)T (β − β̂)

)2
(67)

≤λa
(
‖β‖1 − ‖β̂‖1 + η||β − β̂||1

)
.

≤λa(1 + η)||β − β̂||1. (68)

Let xj be the j-th column of the design matrix X and
x̄jA = n−1A

∑
i∈A xij . Again, by KKT conditon, we have∣∣∣∣∣ 1

nA

∑
i∈A

(xij − x̄jA)
(
ai − āA − (xi − x̄A)T β̂

)∣∣∣∣∣ = λa,

if β̂j 6= 0.

Substituting ai by the decomposition 3 yields∣∣∣∣∣ 1

nA

∑
i∈A

(xij − x̄jA)(ei − ēA) +
1

nA

∑
i∈A

(xij − x̄jA)

(xi − x̄A)T (β − β̂)
∣∣∣ = λa.

Combining with the definition of the event L, we have if
β̂j 6= 0

∆j :=

∣∣∣∣∣ 1

nA

∑
i∈A

(xij − x̄jA)(xi − x̄A)T (β − β̂)

∣∣∣∣∣ ≥ (1−η)λa.

(69)
Let Z = (z1, ..., zn) ∈ Rp×n with zi = xi − x̄A ∈ Rp and

denote w = ZT (β − β̂), then

1

nA
||wA||22 =

1

nA

∑
i∈A

(
(xi − x̄A)T (β − β̂)

)2
≤ λa(1 + η)||β − β̂||1.

Let ZA = (zi : i ∈ A); since the largest eigenvalues of
ZTAZA and ZAZ

T
A are the same,

1

n2A
wT
AZ

T
AZAwA

≤ 1

n2A
λmax(ZTAZA)||wA||22

≤ 1

nA
λmax(ZAZ

T
A)λa(η + 1)||β − β̂||1

≤ Λmax
n

nA
λa(1 + η)||β − β̂||1.

The last inequality holds because

λmax(ZAZ
T
A)

= max
u:||u||2=1

uTZAZ
T
Au

= max
u:||u||2=1

uT
∑
i∈A

(xi − x̄A)(xi − x̄A)Tu

= max
u:||u||2=1

uT
∑
i∈A

xix
T
i u− nAuT (x̄A)(x̄A)Tu

≤ max
u:||u||2=1

uT
∑
i∈A

xix
T
i u ≤ nΛmax. (70)

On the other hand,

1

n2A
wT
AZ

T
AZAwA =

p∑
j=1

∆2
j ≥

∑
j:β̂j 6=0

∆2
j ≥ (1− η)2λ2aŝ.

(71)
Combining 69, 71 and the fact that with probability go-
ing to 1 (see the proof of Lemma 3)

||β − β̂||1 ≤ Cs(1 + η)λa,

where C is a constant, we conclude that with probability
going to 1,

ŝ ≤ 1

(1− η)2
1

λ2a
Λmax

n

nA
λa(1 + η)Cs(1 + η)λa

≤ C(1 + η)2

pA(1− η)2
s.
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E.4. Proof of Lemma 5

Proof. For any t > 0, we have

P (|z̄A− lim
n→∞

z̄| > t) ≤ P (|z̄A−z̄| > t/2)+P (|z̄− lim
n→∞

z̄| > t/2).

(72)
The second term in the right hand side of 72 obviously

converges to 0 as n → ∞. To bound the first term, we
apply the concentration inequality 33. By 47, it is easy
to show

1

n

n∑
i=1

z2i =
1

n

n∑
i=1

|zi|1−ε|zi|1+ε

≤ (nL)
1−ε
1+ε

1

n

n∑
i=1

|zi|1+ε ≤ L
2

1+εn
1−ε
1+ε .

Concentration inequality 33 yields

P (|z̄A − z̄| > t/2) ≤ 2 exp

{
− pAnAt

2

4(1 + τ)2L
2

1+εn
1−ε
1+ε

}
→ 0.

E.5. Proof of Lemma 6

Proof. It is easy to verify that

1

nA

∑
i∈A

(xi − x̄A)(ei − ēA) =
1

nA

∑
i∈A

xiei − (x̄A)(ēA).

Hence,

|| 1

nA

∑
i∈A

(xi − x̄A)(ei − ēA)||∞

≤ || 1

nA

∑
i∈A

xiei||∞ + ||(x̄A)(ēA)||∞.
(73)

We analyze these two terms on the right hand side of the
inequality separately. For the first term, by the triangle
inequality and the definition of δn in 9,

|| 1

nA

∑
i∈A

xiei||∞ (74)

≤ || 1

nA

∑
i∈A

xiei −
1

n

n∑
i=1

xiei||∞ + || 1
n

n∑
i=1

xiei||∞

≤ || 1

nA

∑
i∈A

xiei −
1

n

n∑
i=1

xiei||∞ + δn. (75)

We will again bound 74 by the concentration inequality
33 in Lemma 1. By the Cauchy-Schwarz inequality, we
have for any j = 1, .., p,

1

n

n∑
i=1

x2ije
2
i ≤

(
1

n

n∑
i=1

x4ij

) 1
2
(

1

n

n∑
i=1

e4i

) 1
2

≤ L.

Let tn = (1+τ)L1/2

pA

√
2 log p
n , then by the union bound and

the concentration inequality 33,

P

(
|| 1

nA

∑
i∈A

xiei −
1

n

n∑
i=1

xiei||∞ > tn

)

≤ 2 exp

{
log p− pAnAt

2
n

(1 + τ)2L)

}
= 2 exp {− log p} → 0.

Taking this back to 74, we have

P

(
|| 1

nA

∑
i∈A

xiei||∞ ≤ tn + δn

)
→ 1. (76)

For the second term, by Lemma 2, we have shown that,

P

(
‖x̄A‖∞ ≤

(1 + τ)L1/4

pA

√
2 log p

n

)
→ 1.

A similar proof yields

P

(
‖ēA‖∞ ≤

(1 + τ)L1/4

pA

√
2 log p

n

)
→ 1.

Hence, under the scaling condition 26,

P

(
‖(x̄A)(ēA)‖∞ ≤

(1 + τ)L1/2

pA

√
2 log p

n

)
→ 1. (77)

Combining 76 and 77 yields

P

(
|| 1

nA

∑
i∈A

(xi − x̄A)(ei − ēA)||∞

≤ 2(1 + τ)L1/2

pA

√
2 log p

n
+ δn

)
→ 1.

The conclusion follows from the condition λa ∈ ( 1
η ,M ]×(

2(1+τ)L1/2

pA

√
2 log p
n + δn

)
.

E.6. Proof of Lemma 7

Proof. It is easy to see that

1

nA

∑
i∈A

(xi− x̄A)(xi− x̄A)T =
1

nA

∑
i∈A

xix
T
i − (x̄A)(x̄A)T .

Then, by triangle inequality,

|| 1

nA

∑
i∈A

(xi − x̄A)(xi − x̄A)T − 1

n
XTX||∞ (78)

≤ || 1

nA

∑
i∈A

xix
T
i −

1

n

n∑
i=1

xix
T
i ||∞︸ ︷︷ ︸

∗

+ ||(x̄A)(x̄A)T ||∞︸ ︷︷ ︸
∗∗

.

(79)
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We control the first term (∗) again using the con-
centration inequality 33 and the union bound. By the
wayCauchy-Schwarz inequality, for j, k = 1, ..., p,

1

n

n∑
i=1

x2ijx
2
ik ≤

(
1

n

n∑
i=1

x4ij

) 1
2
(

1

n

n∑
i=1

x4ik

) 1
2

≤ L.

Then,

P

(
|| 1

nA

∑
i∈A

xix
T
i −

1

n

n∑
i=1

xix
T
i ||∞ ≥

(1 + τ)L1/2

pA√
3 log p

n

)

≤ 2 exp

{
2 log p− 3pAnA(1 + τ)2L log p

(1 + τ)2Lp2An

}
= 2 exp {− log p} → 0. (80)

The second term (∗∗) is bounded by again observing
that, by Lemma 2 and the scaling condition 26,

(∗∗) ≤ ||x̄A||2∞ = op(

√
log p

n
). (81)

Combining 80 and 81 yields the conclusion.

F. Tables and Figures
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Figure 5: Boxplot of the interval length with coverage probability (%) on top of each box for the unadjusted, OLS
adjusted (only computed when p = 50), cv(Lasso) adjusted and cv(Lasso+OLS) adjusted estimators with nA = 100.
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Figure 6: Boxplot of the interval length with coverage probability (%) on top of each box for the unadjusted, OLS
adjusted (only computed when p = 50), cv(Lasso) adjusted and cv(Lasso+OLS) adjusted estimators with nA = 125.
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Figure 7: Boxplot of the interval length with coverage probability (%) on top of each box for the unadjusted, OLS
adjusted (only computed when p = 50), cv(Lasso) adjusted and cv(Lasso+OLS) adjusted estimators with nA = 150.
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Figure 8: Boxplot of the unadjusted, OLS adjusted (only computed when p = 50), cv(Lasso) and cv(Lasso+OLS)
adjusted estimators with their standard deviations presented on top of each box for nA = 100.
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Figure 9: Boxplot of the unadjusted, OLS adjusted (only computed when p = 50), cv(Lasso) and cv(Lasso+OLS)
adjusted estimators with their standard deviations presented on top of each box for nA = 125.
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Figure 10: Boxplot of the unadjusted, OLS adjusted (only computed when p = 50), cv(Lasso) and cv(Lasso+OLS)
adjusted estimators with their standard deviations presented on top of each box for nA = 150.
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Unadjusted

ATEunadj

D
e

n
s
it
y

−1.0 −0.5 0.0 0.5

0
.0

1
.0

2
.0

true ATE

N(ATE,σunadj
2

)

Kernel density

OLS

ATEOLS

D
e

n
s
it
y

−1.0 −0.5 0.0 0.5

0
.0

1
.0

2
.0

true ATE

N(ATE,σOLS
2

)

Kernel density

cv(Lasso)

ATEcv(Lasso)

D
e

n
s
it
y

−1.0 −0.5 0.0 0.5

0
.0

1
.0

2
.0

true ATE

N(ATE,σLasso
2

)

Kernel density

cv(Lasso+OLS)

ATEcv(Lasso+OLS)

D
e

n
s
it
y

−1.0 −0.5 0.0 0.5

0
.0

1
.0

2
.0

true ATE

N(ATE,σLasso+OLS
2

)

Kernel density

Figure 14: Histograms of ATE estimates. The green vertical lines are the true ATE; the red curves are the density
of normal distribution; the blue curves are the kernel density estimate. The blue curves are very close to the red ones
meaning that all the ATE estimates follow normal distribution.

28



Table 4: Bias, standard deviation (SD) and root-mean square error
√

MSE of ATE estimates

(p, ρ)
Statistic Method (50,0) (50,0.6) (500,0) (500,0.6)

nA = 100
Unadjusted 0.003(0.004) 0.005(0.005) 0.002(0.003) 0.003(0.005)

bias OLS 0.014(0.005) 0.013(0.006) - -
cv(Lasso) 0.007(0.004) 0.014(0.005) 0.006(0.004) 0.005(0.004)
cv(Lasso+OLS) 0.011(0.004) 0.013(0.005) 0.009(0.004) 0.003(0.004)
Unadjusted 0.79(0.08) 1.17(0.11) 0.79(0.07) 1.17(0.11)

SD OLS 0.72(0.07) 0.96(0.09) - -
cv(Lasso) 0.62(0.06) 0.82(0.08) 0.67(0.06) 0.84(0.08)
cv(Lasso+OLS) 0.63(0.06) 0.82(0.08) 0.65(0.06) 0.84(0.08)
Unadjusted 0.79(0.08) 1.17(0.11) 0.79(0.07) 1.17(0.11)√

MSE OLS 0.72(0.07) 0.97(0.09) - -
cv(Lasso) 0.63(0.06) 0.82(0.08) 0.67(0.06) 0.85(0.08)
cv(Lasso+OLS) 0.63(0.06) 0.82(0.08) 0.65(0.06) 0.84(0.08)

nA = 125
Unadjusted 0.008(0.005) 0.011(0.007) 0.006(0.004) 0.01(0.007)

bias OLS 0.008(0.004) 0.005(0.005) - -
cv(Lasso) 0.005(0.003) 0.012(0.005) 0.007(0.004) 0.004(0.004)
cv(Lasso+OLS) 0.012(0.004) 0.012(0.005) 0.011(0.004) 0.003(0.003)
Unadjusted 0.80(0.08) 1.15(0.11) 0.8(0.08) 1.15(0.11)

SD OLS 0.69(0.06) 0.90(0.09) - -
cv(Lasso) 0.62(0.06) 0.79(0.07) 0.67(0.06) 0.82(0.08)
cv(Lasso+OLS) 0.62(0.06) 0.79(0.07) 0.65(0.06) 0.81(0.08)
Unadjusted 0.80(0.07) 1.15(0.11) 0.8(0.07) 1.15(0.11)√

MSE OLS 0.69(0.07) 0.90(0.09) - -
cv(Lasso) 0.62(0.06) 0.80(0.08) 0.67(0.06) 0.82(0.08)
cv(Lasso+OLS) 0.62(0.06) 0.79(0.07) 0.65(0.06) 0.81(0.08)

nA = 150
Unadjusted 0.004(0.004) 0.000(0.005) 0.002(0.003) 0.005(0.005)

bias OLS 0.002(0.003) 0.006(0.005) - -
cv(Lasso) 0.003(0.003) 0.002(0.004) 0.01(0.005) 0.002(0.003)
cv(Lasso+OLS) 0.011(0.004) 0.006(0.004) 0.017(0.005) 0.001(0.003)
Unadjusted 0.85(0.08) 1.19(0.11) 0.85(0.08) 1.19(0.11)

SD OLS 0.76(0.07) 0.96(0.09) - -
cv(Lasso) 0.66(0.06) 0.82(0.08) 0.72(0.07) 0.84(0.08)
cv(Lasso+OLS) 0.67(0.06) 0.81(0.07) 0.71(0.07) 0.84(0.08)
Unadjusted 0.85(0.08) 1.19(0.11) 0.85(0.08) 1.19(0.11)√

MSE OLS 0.76(0.07) 0.96(0.09) - -
cv(Lasso) 0.66(0.06) 0.82(0.08) 0.72(0.07) 0.84(0.08)
cv(Lasso+OLS) 0.67(0.06) 0.82(0.08) 0.71(0.07) 0.84(0.08)

The numbers in parentheses are the corresponding standard errors estimated by using the bootstrap with B = 500
resamplings of the ATE estimates.
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Table 5: Mean number of selected covariates for treated and control group

(p, ρ)
Group Method (50,0) (50,0.6) (500,0) (500,0.6)

nA = 100
treated cv(Lasso) 16 13 22 22

cv(Lasso+OLS) 6 6 7 7
control cv(Lasso) 20 11 32 28

cv(Lasso+OLS) 8 6 7 7

nA = 125
treated cv(Lasso) 17 13 25 24

cv(Lasso+OLS) 7 6 6 6
control cv(Lasso) 19 11 32 27

cv(Lasso+OLS) 8 6 9 8

nA = 150
treated cv(Lasso) 18 13 29 26

cv(Lasso+OLS) 8 7 6 6
control cv(Lasso) 19 12 30 25

cv(Lasso+OLS) 8 6 11 8

Table 6: Coverage probability (%) and mean interval length (in parentheses) for 95% confidence interval

(p, ρ)
Methods (50,0) (50,0.6) (500,0) (500,0.6)

nA = 100
Unadjusted 97.3(3.54) 95.8(4.79) 97.3(3.54) 95.8(4.79)
OLS 92.2(2.55) 90.0(3.19) - -
cv(Lasso) 95.8(2.58) 94.5(3.20) 94.3(2.61) 92.4(3.07)
cv(Lasso+OLS) 95.6(2.57) 94.4(3.17) 94.8(2.60) 93.0(3.11)

nA = 125
Unadjusted 97.4(3.56) 96.0(4.74) 97.3(3.56) 95.9(4.74)
OLS 93.3(2.54) 91.6(3.14) - -
cv(Lasso) 96.0(2.56) 95.0(3.15) 94.1(2.59) 92.9(3.02)
cv(Lasso+OLS) 95.7(2.55) 94.9(3.12) 94.4(2.58) 93.6(3.06)

nA = 150
Unadjusted 97.1(3.72) 95.8(4.88) 97.1(3.72) 95.8(4.88)
OLS 91.4(2.64) 90.4(3.21) - -
cv(Lasso) 95.4(2.66) 94.9(3.23) 92.9(2.68) 92.6(3.08)
cv(Lasso+OLS) 94.7(2.63) 94.8(3.19) 92.0(2.63) 93.1(3.11)
The numbers in parentheses are the corresponding mean interval lengths.
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Algorithm 1 K-fold Cross Validation (CV) for the Lasso+OLS estimator

Input: Design matrix X, response Y and a sequence of tuning parameter λ1, ..., λJ ; Number of folds K.

Output: The optimal tuning parameter selected by CV: λoptimal.

1: Divide randomly the data z = (X,Y ) into K roughly equal parts zk, k = 1, ...,K;

2: For each k = 1, ...,K, denote Ŝ(k)(λ0) = ∅ and β̂
(k)
Lasso+OLS(λ0) = 0.

• Fit the model with parameters λj , j = 1, ..., J to the other K − 1 parts z−k = z \ zk of the data, giving the

Lasso solution path β̂(k)(λj), j = 1, ..., J and compute the selected covariates set Ŝ(k)(λj) = {l : β̂
(k)
l (λj) 6=

0}, j = 1, ..., J on the path;

• For each j = 1, ..., J , compute the Lasso+OLS estimator:

β̂
(k)
Lasso+OLS(λj) =


arg min

β: βj=0, ∀j /∈Ŝ(k)(λj)

 1

2|z−k|
∑
i∈z−k

(yi − xTi β)2

 , if Ŝ(k)(λj) 6= Ŝ(k)(λj−1),

β̂
(k)
Lasso+OLS(λj−1), otherwise;

(82)

• Compute the error in predicting the kth part of the data PE(k) :

PE(k)(λj) =
1

|zk|
∑
i∈zk

(
yi − xTi β̂

(k)
Lasso+OLS(λj)

)2
;

3: Compute cross validation error CV (λj), j = 1, ..., J :

CV (λj) =
1

K

K∑
k=1

PE(k)(λj);

4: Compute the optimal λ selected by CV;

λoptimal = argmin
λj : j=1,...,J

CV (λj);

5: return λoptimal.
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