
Causality 

Causality refers to the relationship between events where one set of events (the 

effects) is a direct consequence of another set of events (the causes). Causal inference is 

the process by which one can use data to make claims about causal relationships. Since 

inferring causal relationships is one of the central tasks of science, it is a topic that has 

been heavily debated in philosophy, statistics, and the scientific disciplines. In this article, 

we review the models of causation and tools for causal inference most prominent in the 

social sciences, including regularity approaches, associated with David Hume, and 

counterfactual models, associated with Jerzy Neyman, Donald Rubin, and David Lewis, 

among many others. One of the most notable developments in the study of causation is 

the increasing unification of disparate methods around a common conceptual and 

mathematical language that treats causality in counterfactual terms---i.e., the Neyman-

Rubin model.  We discuss how counterfactual models highlight the deep challenges 

involved in making the move from correlation to causation, particularly in the social 

sciences where controlled experiments are relatively rare. 

Regularity Models of Causation 

Until the advent of counterfactual models, causation was primarily defined in 

terms of observable phenomena. It was philosopher David Hume in the eighteenth 

century who began the modern tradition of regularity models of causation by defining 

causation in terms of repeated “conjunctions” of events. In An Enquiry into Human 

Understanding (1751), Hume argued that the labeling of two particular events as being 

causally related rested on an untestable metaphysical assumption.  Consequently, Hume 

argued that causality could only be adequately defined in terms of empirical regularities 



involving classes of events.  How could we know that a flame caused heat, Hume asked? 

Only by calling “to mind their constant conjunction in all past instances. Without further 

ceremony, we call the one cause and the other effect, and infer the existence of one from 

that of the other.”  Hume argued that three empirical phenomenon were necessary for 

inferring causality: contiguity (“the cause and effect must be contiguous in time and 

space”), succession (“the cause must be prior to the effect”), and constant conjunction 

(“there must be a constant union betwixt the cause and effect”).  Under this framework, 

causation was defined purely in terms of empirical criteria, rather than unobservable 

assumptions. In other words, Hume's definition of causation and his mode of inference 

were one and the same. 

John Stewart Mill, who shared the regularity view of causation with David Hume, 

elaborated basic tools for causal inference that were highly influential in the social 

sciences. For Mill, the goal of science was the discovery of regular empirical laws.  To 

that end, Mill proposed in his 1843 A System of Logic, a series of rules or “canons” for 

inductive inference. These rules entailed a series of research designs that examined 

whether there existed covariation between a hypothesized cause and its effect, time 

precedence of the cause, and no plausible alternative explanation of the effect under 

study.  Mill argued that these research designs were only effective when combined with a 

manipulation in an experiment.  Recognizing that manipulation was unrealistic in many 

areas of the social sciences, Mill expressed skepticism about possibility of causal 

inference for questions not amenable to experiments. 

The mostly widely used of Mill's canons, the “Direct Method of Difference”, 

entailed the comparison of two units identical in all respects except for some manipulable 



treatment. The method of difference involves creating a counterfactual control unit for a 

treated unit under the assumption that the units are exactly alike prior to treatment, an 

early example of counterfactual reasoning applied to causal inference.  Mill stated the 

method as follows: 

If an instance in which the phenomenon... occurs and an 

instance in which it does not... have every circumstance 

save one in common... [then] the circumstance [in] which 

the two instances differ is the... cause or a necessary part of 

the cause (III, sec. 8).   

The weakness of this research design is that in practice, particularly in the social sciences, 

it is very difficult to eliminate all heterogeneity in the units under study. Even in the most 

controlled environments, two units will rarely be the same on all background conditions. 

Consequently, inferences made under this method require strong assumptions.  

Mill's and related methods have been criticized on a variety of grounds. His 

cannons and related designs assume that the relationship between cause and effect is 

unique and deterministic.  These conditions allow neither for more than one cause of an 

effect nor for interaction among causes.  The assumption that causal relationships are 

deterministic or perfectly regular precludes the possibility of measurement error.  If 

outcomes are measured with error, as they often are in the social sciences, then methods 

predicated on detecting constant conjunctions will fail. Furthermore, the causal 

relationships typically studied in the social and biological sciences are rarely, if ever, 

unique. Causes in these fields are more likely to have highly contingent effects, making 

regular causal relationships very rare. 



Counterfactual Models of Causation 

Regularity models of causation have largely been abandoned in favor of 

counterfactual models. Rather than defining causality purely in reference to observable 

events, counterfactual models define causation in terms of a comparison of observable 

and unobservable events.  Linguistically, counterfactual statements are most naturally 

expressed using subjunctive conditional statements such as “if India had not been 

democratic, periodic famines would have continued”.  Thus, the counterfactual approach 

to causality begins with the idea that some of the information required for inferring causal 

relationships is and will always be unobserved, and therefore some assumptions must be 

made.  In stark contrast to the regularity approach of Hume, the fact of counterfactual 

causation is fundamentally separate from the tools used to infer it. As a result, 

philosophers like David Lewis (1973) could write about the meaning of causality with 

little discussion of how it might be inferred. It was statisticians, beginning with Jerzy 

Neyman in 1923 and continued most prominently by Donald Rubin, who began to clarify 

the conditions under which causal inferences were possible if causation was 

fundamentally a “missing data problem”. 

Counterfactual Models within Philosophy 

Within philosophy, counterfactual models of causation were largely absent until 

the 1970’s due to W.V. Quine’s dismissal of the approach in his Methods of Logic (1950) 

when he pointed out that counterfactual statements could be nonsensical. He illustrated 

this point by his famous comparison of the conditional statements “If Bizet and Verdi had 

been compatriots, Bizet would have been Italian” and “If Bizet and Verdi had been 

compatriots, Verdi would have been French.”  For Quine, the incoherence of the two 



statements implied that subjective conditionals lacked clear and objective truth 

conditions. Quine's suspicion of conditional statements was also rooted in his skepticism 

of evaluating the plausibility of counterfactual “feigned worlds”, as he explained in Word 

and Object (1960): 

The subjunctive conditional depends, like indirect 

quotation and more so, on a dramatic projection: we feign 

belief in the antecedent and see how convincing we then 

find the consequent. What traits of the real world to 

suppose preserved in the feigned world of the contrary-to-

fact antecedent can only be guessed from a sympathetic 

sense of the fabulist's likely purpose in spinning his fable 

(pg. 222). 

Perhaps because of this view of counterfactuals, Quine had a dim view of the concept of 

causality. He argued that as science advanced, vague notions of causal relationships 

would disappear and be replaced by Humean “concomitances”---i.e., regularities.  

 In philosophy, David Lewis popularized the counterfactual approach to causality 

fifty years after it first appeared in statistics with Jerzy Neyman's 1923 paper on 

agricultural experiments.  For Lewis, Quine's examples only revealed problems with 

vague counterfactuals, not counterfactuals in general.  A cause, according to Lewis in his 

1973 article “Causation”, was “something that makes a difference, and the difference it 

makes must be a difference from what would have happened without it”. More 

specifically, he defined causality in terms of  “possible” (counterfactual) worlds. As a 



primitive, he postulated that one can order possible worlds with respect to their closeness 

with the actual world. Counterfactual statements can be defined as followed:  

   If A were the case, C would be the case” is true in the 

actual world if and only if (i) there are no possible A-

worlds; or (ii) some A-world where C holds is closer to the 

actual world than is any A-world where C does not hold. 

More intuitively, causal inferences arise by comparing the actual world to the closest 

possible world. If C occurs both in the actual and the closest possible world without A, 

according to Lewis, then A is not the cause of C. If, on the other hand, C does not occur 

in the closest possible world without A, then A is a cause of C. 

Lewis's theory was concerned with ontology, not epistemology. As a result, one 

might argue that his work has limited use to empirical research since he provided little 

practical guidance on how one could conjure closest possible worlds to use as 

comparison cases. Without additional assumptions, Lewis's model suggests that causal 

inference is a fruitless endeavor given our inability to observe non-existent counterfactual 

worlds.  

Statistical Models of Causation 

Fortunately, statisticians beginning with Jerzy Neyman in 1923, elaborated a 

model of causation that allowed one to treat causation in counterfactual terms and 

provided guidance on how empirical researchers could create observable counterfactuals. 

Say we are interested in inferring the effect of some cause   

! 

T  on a parameter   

! 

Y  of the 

distribution of outcome   

! 

Y  in population   

! 

A relative to treatment   

! 

C  (control). Population   

! 

A 

is composed of a finite number of units and     

! 

Y A,T  is simply a summary of the distribution 



of that population when exposed to   

! 

T , such as the mean.  If treatment   

! 

C  (control) were to 

be applied to population   

! 

A, then we would observe     

! 

Y A,C . To use Lewis's terminology, in 

the actual world, we observe     

! 

Y A,T  and in the counterfactual world, we would observe     

! 

Y A,C . 

The causal effect of   

! 

T  relative to   

! 

C  for population   

! 

A is a measure of the difference 

between     

! 

Y A,T  and     

! 

Y A,C , such as     

! 

Y A,T "Y A,C . Of course, we can only observe the parameter 

that summarizes the actual world and not the counterfactual world. 

The key insight of statistical models of causation is that under special 

circumstances we can use another population,   

! 

B , that was exposed to control, to act as 

the closest possible world of   

! 

A. If we believe that     

! 

Y A,C = Y B,C , then we no longer need to 

rely on a unobserved counterfactual world to make causal inferences, we can simply look 

at the difference between the observed     

! 

Y A,T  and     

! 

Y B,C .  In most cases     

! 

Y A,C " Y B,C , however, so 

any inferences made by comparing the two populations will be confounded.  What are the 

special circumstances that allow us to construct a suitable counterfactual population and 

make unconfounded inferences? As discussed below, the most reliable method is through 

randomization of treatment assignment, but counterfactual inferences with observational 

data are possible---albeit more hazardous---as well. In either case, causes are defined in 

reference to some real or imagined intervention, which makes the counterfactuals well 

defined. 

The Neyman-Rubin Model 

The counterfactual model of causation in statistics originated with Neyman’s 

1923 model which is non-parametric for a finite number of treatments where each unit 

has a potential outcome for each possible treatment condition. In the simplest case with 

two treatment conditions, each unit has two potential outcomes, one if the unit is treated 



and the other if untreated.  In this case, a causal effect is defined as the difference 

between the two potential outcomes, but only one of the two potential outcomes is 

observed.  In the 1970s, Donald Rubin developed the model into a general framework for 

causal inference with implications for observational research.  Paul Holland in 1986 

wrote an influential review article that highlighted some of the philosophical implications 

of the framework. Consequently, instead of the “Neyman-Rubin model”, the model is 

often simply called the Rubin causal model or sometimes the Neyman-Rubin-Holland 

model or the Neyman-Holland-Rubin model. 

The Neyman-Rubin model is more than just the math of the original Neyman 

model. Unlike Neyman's original formulation, it does not rely upon an urn model 

motivation for the observed potential outcomes, but rather the random assignment of 

treatment. For observational studies, one relies on the assumption that the assignment of 

treatment can be treated as-if it were random. In either case, the mechanism by which 

treatment is assigned is of central importance.  The realization that the primacy of the 

assignment mechanism holds true for observational data no less than for experimental, is 

due to Donald Rubin. This insight has been turned into a motto: “no causation without 

manipulation”. 

Let   

! 

YiT  denote the potential outcome for unit   

! 

i  if the unit receives treatment, and 

let   

! 

YiC  denote the potential outcome for unit   

! 

i  in the control regime. The treatment effect 

for observation   

! 

i  is defined by   

! 

"i = YiT #YiC . Causal inference is a missing data problem 

because   

! 

YiT  and   

! 

YiC  are never both observed. This remains true regardless of the 

methodology used to make inferential progress—regardless of whether we use 

quantitative or qualitative methods of inference. The fact that we cannot observe both 



potential outcomes at the same time is commonly referred to as the “fundamental 

problem of causal inference”. 

Let   

! 

Ti  be a treatment indicator: 1 when   

! 

i  is in the treatment regime and 0 

otherwise. The observed outcome for observation   

! 

i  is then: 

    

! 

Yi = TiYiT + (1" Ti )YiC  

The average causal effect 

! 

"  is the difference between the expected values     

! 

"(YT ) and 

    

! 

"(YC ). We only observe the conditional expectations     

! 

"(YT | T =1) and     

! 

"(YC | T = 0), not the 

unconditional expectations required for obtaining 

! 

" . Until we assume that 

    

! 

"(YT | T =1) = "(YT ) and     

! 

"(YC | T = 0) = "(YC ), we cannot calculate the average treatment 

effect.  Note that the estimand of interest, such as the average treatment effect, is 

conceptually distinct from the estimators used to infer it from data, such as difference-in-

means, linear regression, or other techniques.  

Experiments 

To estimate the average treatment effect, we require the assumption of 

independence. The singular virtue of experiments is that physical randomization of an 

intervention ensures independence between treatment status and potential outcomes.  

R.A. Fisher, in the 1920s and 1930s, first emphasized the importance of random 

assignment for eliminating bias, calling randomization of treatment the “reasoned basis 

for inference”. From a Lewsian perspective, the control group in an experiment functions 

as an observable “possible world”. With the independence assumption, the average 

treatment effect can be estimated from observables using the following expression: 

    

! 

" = #(YiT | T =1) $#(YiC | T = 0) = #(YiT ) $#(YiC ) 



Under randomization, the assumption that   

! 

Ti  is independent of   

! 

YiT  and   

! 

YiC  is plausible, 

making the treatment and control groups exchangeable in expectation.  

One of the assumptions which randomization by itself does not justify is that the 

response of one unit should be unaffected by the particular assignment of treatments to 

the other units. This “no interference between units” is often called the Stable Unit 

Treatment Value Assumption (SUTVA). SUTVA implies that the potential outcomes for 

a given unit do not vary with the treatments assigned to any other unit, and that there are 

not different versions of treatment.   

Observational Data 

In observational data, stronger assumptions are usually required to estimate causal 

effects. In observational studies, the causal quantity of interest is often the “average 

treatment effect on the treated” or ATT, which is the average effect conditional on being 

in the treatment regime. The parameter of interest is:  

    

! 

" | (T =1) = #(YiT | T =1) $#(YiC | T =1)  

Since the counterfactual control units,     

! 

"(YiC | T =1) , are not observed, a control group 

must be constructed. The two assumptions required to construct a valid control group are 

conditional independence of the potential outcomes and treatment assignment and 

overlap, or: 

1.     

! 

YiT ,YiC"T | X  

2.     

! 

0 < Pr(T =1| X) <1 

When these two conditions hold, we can say that treatment assignment is strongly 

ignorable. Once a control group is constructed that enables us to satisfy these two 

conditions, the average treatment effect on the treated can be estimated as:  



    

! 

" | (T =1) = #[#(YiT | T =1) $#(YiC | T = 0)] | T =1 

It is important to note that the outer expectation is taken over the distribution of 

    

! 

X | (T =1), which is the distribution of covariates among the treated units.  

Note that the ATT estimator is changing how individual observations are 

weighted, and that observations which are outside of common support receive zero 

weights. That is, if some covariate values are only observed for control observations, 

those observations will be irrelevant for estimating ATT and are effectively dropped. 

Therefore, the overlap assumption for ATT only requires that the support of   

! 

X  for 

treatment observations be a subset of the support of   

! 

X  for control observations. More 

generally, one would also want to drop treatment observations if they have covariate 

values which do not overlap with control observations. In such cases, it is unclear exactly 

what estimand one is estimating because it is no longer ATT as some treatment 

observations have been dropped along with some control observations.  

The key assumption being made here is strong ignorability. Even thinking about 

this assumption presupposes some rigor in the research design. For example, is it clear 

what is pre- and what is post-treatment? If not, one is unable even to form the relevant 

questions, the most useful of which may be the one suggested by H.F. Dorn in 1953 who 

proposed that the designer of every observational study should ask “[h]ow would the 

study be conducted if it were possible to do it by controlled experimentation?” This clear 

question also appears in Cochran's 1965 Royal Statistical Society discussion paper on the 

planning of observational studies of human populations. Dorn’s question has become one 

which researchers in the tradition of the Neyman-Rubin model ask themselves and their 

students. The question forces the researcher to focus on a clear manipulation and then on 



the selection problem at hand. Only then can one even begin to think clearly about how 

plausible the strong ignorability assumption may or may not be.  

Structural Equation Modeling 

Another prominent approach to causal inference using counterfactuals is 

structural equation modeling, a method most associated with the work of Judea Pearl.  

Structural equation modeling is an old enterprise that has a rich history, including 

foundational work on causality in systems of structural equations by geneticist Sewall 

Wright (1921), economist Trygve Haavelmo (1943) and political scientist Herbert Simon 

(1953).  Modern advocates of structural equation modeling argue that the probability 

calculus approach to causal modeling used by researchers in the Neyman-Rubin tradition 

is too narrow in that it does not explicitly take into account knowledge about the 

mechanisms linking background, independent, and dependent variables. Rather than 

modeling causality in relation to experiments, structural equation modelers prefer to write 

out a more elaborate causal model of the relationships under investigation through a 

system of structural functions. A system of such functions are said to be structural if they 

are assumed to be invariant to possible changes in the form of the other functions.  Under 

this framework, the effects of treatments are understood as interventions in a pre-

specified structural model.  

For structural equation modelers, hypothetical interventions should be explicitly 

and formally related to the causal mechanisms under study. In Pearl's version of 

structural equation modeling, for example, the mathematical operator “    

! 

do(x)” is used to 

represent physical interventions in a set of equations that deletes certain functions from 

the model, replaces them by a constant, and preserves the rest of the model. The 



counterfactual conditional of  “if   

! 

X  had been   

! 

x '' is interpreted as an instruction to 

modify the original model so that some causal variable   

! 

X is set to   

! 

x  by some 

intervention, experimental or otherwise. This operator is accompanied by a set of rules 

called “do calculus” that helps a researcher judge whether or not sufficient information 

exists to identify the effect of the intervention of interest. Rather than identifying one all-

encompassing assumption---strong ignorability---as in the Neyman-Rubin approach, 

Pearl proposes that researchers adopt a series of local assumptions about how an 

intervention interacts with a pre-specified structural model to identify causal quantities. 

Despite the rather substantial conceptual differences between these two approaches, 

however, they are mutually compatible.  This compatibility arises from their shared 

reliance on counterfactual understandings of causality.  

Causal Mechanisms 

The Neyman-Rubin counterfactual approach is primarily concerned with defining 

what the effect of a cause is, not explaining how causes affect outcomes.  The apparatus 

of most statistical models of causation have no formal role for social theory, explanation, 

or causal mechanisms. Given social scientists' interest in these issues, a common critique 

of the Neyman-Rubin model and its cousins are that they are too narrow for social 

sciences. Advocates of the statistical approach have countered that counterfactual models 

of causation can be augmented to take into account causal mechanisms.  

 While experiments have the virtue of credibly identifying the causal effect of an 

intervention, they are sometimes criticized as “black boxes”. To understand the pathways 

by which interventions affect the outcome, social scientists have relied on a method 

known as “mediation analysis”, which models the relationship between a treatment, a 



potentially post-treatment variable, and the outcome ultimately of interest. An important 

distinction in this literature is whether or not the “mediator” is treated as post-treatment 

or not.  If the mediator is not affected by treatment, the effect of interest is how the 

manipulable mediator affects or moderates the outcome when the main treatment variable 

is fixed, known as the “controlled direct effect”.  

This controlled direct effect is not always the effect of interest, however, since 

mediation analysis is often intended to shed light on the role of mechanisms, which in 

this framework, can be defined as a process that can transmit, at least partially, the effect 

of a treatment on an outcome.  An important distinction between a manipulation (a 

“treatment”) and a mechanism is that the former involves an external intervention, while 

the latter does not. The goal of this type of mediation analysis is to estimate what fraction 

of a causal effect is “indirect”, i.e. due to the treatment changing the level of the mediator 

and consequently the outcome, and what fraction is “direct”, i.e. due to the treatment 

affecting the outcome through other pathways. Expressed in counterfactual language, an 

“uncontrolled” indirect effect is a comparison between the outcome when the mediator is 

set at the value realized in the treatment condition and the outcome when the mediator is 

set to the value that would be observed under the control condition, while holding 

treatment status constant.   

Uncontrolled mediation effects are often of great interest, but unfortunately, even 

with a randomized intervention, their identification rest on strong assumptions. In 

mediation analyses, the level of the mediator is generally assumed to be independent of 

the counterfactual outcomes conditional on treatment assignment, i.e. the mediator is 

assigned “as if” random. Given that an uncontrolled mediator variable, by definition, is 



not randomly assigned, this assumption is strong indeed. While the identification 

assumptions may be warranted in special circumstances, the main lesson of the statistical 

literature is that the quantitative study of causal mechanisms is an enterprise fraught with 

difficulties, even in the context of randomized experiments. 

Qualitative Evidence and Theory Falsification 

While the quantitative study of causality is well-developed and increasingly 

unified under counterfactual models, many social scientist supplement statistical methods 

with qualitative reasoning to aid causal inference. Sometimes called “causal process 

observations”, qualitative evidence can be an important source of leverage for both the 

design of causal analyses and the interpretation of their findings.  Within the social 

sciences, for example, most evidence for mechanisms is qualitative, not quantitative.  

Qualitative researchers argue that by direct observation of causal processes, a researcher 

can discern potentially important mechanisms that may have escaped notice. Insight 

derived from observations that are poorly suited for rectangular datasets may then lead to 

more formal investigations using experimental and observational quantitative methods. 

The health sciences, for example, are replete with examples of qualitative observation 

paving the way for groundbreaking experiments.  

 Given that most questions in the social sciences are studied using observational 

research designs, another role for qualitative insight is the justification of the conditional 

independence assumption. Although many and perhaps most observational studies pay 

inadequate attention to justifying the adequacy of their designs, careful observational 

research must identify important confounders and uncover fortuitous “natural” 

experiments for making well grounded inferences. Qualitative evidence can be used to 



identify appropriate confounders to adjust for, as well as justify any claim that treatment 

was allocated “as if” random.  

 For many questions in the social sciences, however, a research design 

guaranteeing the validity of causal inferences is difficult to obtain. When this is the case, 

researchers can attempt to defend hypothesized causal relationships by seeking data that 

subjects their theory to repeated falsification.  Karl Popper famously argued that the 

degree to which we have confidence in a hypothesis is not necessarily a function of the 

number of tests it has withstood, but rather the severity of the tests to which the 

hypothesis has been subjected. A test of a hypothesis with a design susceptible to hidden 

bias is not particularly severe or determinative.  If the implication is tested in many 

contexts, however, with different designs that have distinct sources of bias, and the 

hypothesis is still not rejected, then one may have more confidence that the causal 

relationship is genuine. Note that repeatedly testing a hypothesis with research designs 

suffering from similar types of bias does not constitute a severe test, since each repetition 

will merely replicate the biases of the original design.  In cases where randomized 

experiments are infeasible or credible natural experiments are unavailable, the inferential 

difficulties facing researchers are large. In such circumstances, only creative and severe 

falsification tests can make the move from correlation to causation convincing.  
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