
Improving massive experiments with threshold
blocking∗

Michael J. Higgins† Fredrik Sävje‡ Jasjeet S. Sekhon§

April 5, 2016

Abstract

Inferences from randomized experiments can be improved by block-

ing: assigning treatment in fixed proportions within groups of sim-

ilar units. However, the use of the method is limited by the diffi-

culty in deriving these groups. Current blocking methods are re-

stricted to special cases or run in exponential time; are not sensitive

to clustering of data points; and are often heuristic, providing an

unsatisfactory solution in many common instances. We present

an algorithm that implements a new, widely applicable class of

blocking—threshold blocking—that solves these problems. Given

a minimum required group size and a distance metric, we study the

blocking problem of minimizing the maximum distance between any

two units within the same group. We prove this is a NP-hard prob-

lem and derive an approximation algorithm that yields a blocking

where the maximum distance is guaranteed to be at most four times

the optimal value. This algorithm runs in O(n log n) time with O(n)

space complexity. This makes it the first blocking method with an

ensured level of performance that works in massive experiments.

While many commonly used algorithms form pairs of units, our

algorithm constructs the groups flexibly for any chosen minimum

size. This facilitates complex experiments with several treatment

arms and clustered data. A simulation study demonstrates the ef-

ficiency and efficacy of the algorithm; tens of millions of units can

be blocked using a desktop computer in a few minutes.

1. Introduction

Properly executed experiments with random assignment
guarantee that estimated treatment effects are equal to
the true causal effects of interest in expectation. How-
ever, only one assignment is realized for a particular ex-
periment, and there could be chance differences between

∗We thank Peter Aronow, Walter R. Mebane, Jr., Marc Ratkovic,
and Yotam Shem-Tov for helpful comments. This research is
partially supported by Office of Naval Research (ONR) grant
N00014-15-1-2367.

†Department of Statistics, Kansas State University.
‡Department of Economics, Uppsala University.
§Department of Political Science and Department of Statistics,

University of California, Berkeley.

treatment and control groups that muddle any compar-
ison. Indicative of such differences are imbalances in
observed baseline characteristics between the treatment
groups. For example, in a medical study on the effect that
a drug has on life expectancy, it may occur by chance that
the control group is older and sicker than the treatment
group. Whenever imbalances in prognostically important
covariates are observed, there is reason to suspect that
the resulting estimates are inaccurate. Studies that do
not attended to this issue cannot be considered to follow
the gold standard of randomized experiments [1]: viewed
before assignment, investigators allowed for unnecessar-
ily high variance; viewed after assignment, they allowed
the estimator to be biased conditional on the observed
distribution of covariates.

Since R.A. Fisher’s canonical treatment [2], blocking
has been the default experimental design to deal with
this problem. With this design, the investigator forms
groups of units, or blocks, that are as similar as possible.
Treatments are then randomly assigned in fixed propor-
tions within blocks and independently across them. This
prevents imbalances in observed covariates, which can in-
crease precision if these covariates are predictive of out-
comes.

Unadjusted estimates for even massive experiments are
often too variable to enable reliable inferences because the
effects of interest may be small and distributional issues
result in surprisingly large variances. A prominent case is
A/B testing of the effectiveness of online advertising [3].
The effects of the adverts are generally very small (al-
though economically relevant due to the low costs), and
consumers’ behaviors tend to follow distributions with fat
tails [4]. Another example is offered by a recent fifteen-
million person experiment on social influence and political
mobilization, where covariate adjustment was needed to
obtain significant results [5].

Moreover, with the rise of massive data, researchers,
policy makers and industry leaders have become increas-
ingly interested in making fine-grained inferences and tar-
geting treatments to subgroups [6]. The recent focus on

1

personalized and precision medicine is a noteworthy ex-
ample [7]. Even with large experiments, subgroups of in-
terest often lack data because of the vagaries of random
assignment and the curse of dimensionality. Blocking en-
ables researchers to define the subgroups of interest ex
ante. This ensures that there will be sufficient data to
make fine-grained inferences.

Finally, because blocking adjusts for covariates in the
design of the study, it limits both the need for and the
effect of adjusting the experiment ex post. Such adjust-
ments often lead to incorrect test levels if investigators
specify models based on the observed treatment assign-
ments [8], or if they pick models based on test results—a
habit that appears to be prevalent [9].

In short, blocking is an essential tool for experiential
design. It enables one to follow Fisher’s advice that Na-
ture should be asked one question at a time, which is
the central motivation for random assignment in the first
place [10].

Despite its providence, usefulness, and wide applicabil-
ity, there are many situations where an effective blocking
design is desirable but where none is possible or feasible.
In particular, current blocking algorithms have primarily
focused on the special case where blocks with exactly two
units are desired, the so called matched-pair design [11].
There exist optimal, polynomial time algorithms for this
design, such as non-bipartite matching [12], but they are
limited to experiments with only two treatment condi-
tions. While there exist heuristic algorithms that can fa-
cilitate larger block sizes, their theoretical properties are
unknown and their performance has not been fully eval-
uated [13]. In many cases, even with relatively modest
samples and considerable computational power, several
years would be required to obtain results using algorithms
with a proven level of optimality. For the largest of ex-
periments, existing algorithms are too computationally
demanding even for the matched-pair design.

In this paper, we introduce the first algorithm that pro-
duces guaranteed near-optimal blockings for any desired
block size. Specifically, we consider the blocking problem
where one wants to minimize the greatest within-block
dissimilarity, as measured by an arbitrary distance met-
ric, subject to a minimum required block size. We prove
that this problem is NP-hard, and we provide an approx-
imation algorithm that in the worst case produces a so-
lution that is four times greater than the optimum. The
algorithm uses computational resources very efficiently: it
is guaranteed to terminate in linearithmic time with lin-
ear space complexity. This makes it applicable in many
cases where existing algorithms are impractical, including
experiments with large samples or multi-armed treatment
schemes.

In additional to large data, our approximation algo-
rithm is likely to perform well in traditional, smaller

experiments, not the least when designs other than
matched-pairs are desired. Our formulation of the block-
ing problem, threshold blocking, differs from the past lit-
erature in that it allows for some flexibility in the block
structure. This leads to blockings that respect natural
clusters of units which may improve performance.

2. Blocking as a graph partition
problem

A blocking of an experiment’s sample is a partition of its
units into disjoint sets, referred to as blocks. The block-
ing problem is to find a blocking where units assigned
to the same block are as similar as possible—either to
minimize differences on prognostically important covari-
ates or to facilitate the study of subgroups of interest. In
the former case, when treatments are assigned in fixed
proportions within blocks, blocking reduces imbalances
between treatment groups and improves the precision of
estimated effects.

Blocking problems can be viewed as graph partition-
ing problems [12, 14]. Each experiment yields a weighted
graph where vertices represent units in the sample. Edges
connect each pair of units, and edge costs are measured
dissimilarity between corresponding units (e.g., the Eu-
clidean or Mahalanobis distance between their covariate
vectors). Minimizing the within-block edge costs when
this graph is partitioned subject to a cardinality condi-
tion is equivalent to deriving an optimal blocking. In the
matched-pair design, the objective is to minimize the sum
of all within-block edge costs subject to that each block
contains exactly two vertices.

To improve blockings and facilitate the approximation
algorithm, we consider a formulation of the blocking prob-
lem that differs from the past literature in three aspects.
First, we facilitate designs other than matched-pairs by
allowing for any desired block size. Second, we con-
sider blockings where each block is required to contain at
least the desired number of units. Such threshold block-
ings have several advantages compared to the fixed-sized
blockings derived by previous methods, where blocks are
forced to be exactly of the desired size. Every fixed-sized
blocking is also a threshold blocking; hence for any sam-
ple and objective function, the optimal solution for the
latter case is guaranteed to be at least as good as in the
former [15]. In particular, fixed-sized blocks might not
respect natural clusterings of units, and one is sometimes
forced to assign similar units to different blocks just to
satisfy the cardinality condition.

Third, we consider a bottleneck objective function.
That is, we wish to find a blocking that minimizes the
maximum within-block edge cost—making the two least
similar units assigned to the same block as similar as

2

possible. The bottleneck objective has some advantages
over the commonly used sum (or average) objective. Go-
ing back to at least Cochran, statisticians have observed
that few large imbalances are often more problematic
than many small ones, especially when blocking is com-
bined with ex post adjustments [16]. Furthermore, par-
allel to monotonic imbalance bounding in observational
studies [17], controlling the maximum imbalance within
a block guarantees that the average imbalance cannot ex-
ceed this maximum after treatments are assigned. If an
infinity norm is used to measure dissimilarity (i.e., the
Chebyshev distance), this also applies to each covariate
in isolation. Minimizing sums or averages does not pro-
vide such guarantees. Finally, bottleneck optimization
problems often have approximate solutions that can be
found efficiently [18]. While the algorithm cannot read-
ily be extended to other objective functions, it has a local
optimality property that provides good performance with
respect to the average within-block edge cost.

2.1. The bottleneck threshold blocking
problem

Let k denote a threshold for the minimum block size.
Consider the complete graph G = (V,E) describing an
experimental sample, where V denotes the set of n ver-
tices (the experimental units) and E denotes the set of
edges connecting all pairs of vertices.1 For each ij ∈ E
there is an associated cost, cij , indicating the dissimilar-
ity between i and j; lower costs mean that units are more
similar. We require that these costs satisfy the triangle
inequality:

∀ij, j`, i` ∈ E, cij + cj` ≥ ci`. (1)

This ensures that the direct route between two vertices
is no longer than a detour through a third vertex. All
distance metrics fulfill this criterion by definition.

Def inition 1 A threshold blocking with threshold k is a
partition b = {V1, · · · , Vm} of V where each block satisfies
the size threshold:

∀ Vx ∈ b, |Vx| ≥ k. (2)

Def inition 2 The subgraph generated by a blocking b =
{V1, . . . , Vm}, denoted G(b) = (V,E(b)), is the union of
subgraphs of G induced by the components of b; that is,
an edge ij ∈ E(b) only if i and j are in the same block:

E(b) ≡ {ij ∈ E : ∃Vx ∈ b, i, j ∈ Vx}. (3)

Let Bk denote the set of all possible threshold blockings
of G with a threshold of k. The bottleneck threshold
1Refer to the appendix for graph theoretical terminology and no-

tation used in this paper.

blocking problem is to find a blocking in Bk such that the
maximum within-block dissimilarity is minimized. This
amounts to finding an optimal blocking b∗ ∈ Bk such that
the largest edge cost in G(b∗), is as small as possible; let
λ denote this minimum:

max
ij∈E(b∗)

cij = min
b∈Bk

max
ij∈E(b)

cij ≡ λ. (4)

Def inition 3 An α-approximation algorithm for the bot-
tleneck threshold blocking problem derives a blocking b ∈
Bk with a maximum within-block cost no larger than αλ:

max
ij∈E(b)

cij ≤ αλ. (5)

In the appendix, we show that, unless P = NP, no
polynomial-time (2 − ε)-approximation algorithm exists
for any ε > 0. Therefore, the problem is NP-hard, and
finding an optimal solution is computationally intractable
except for special cases or very small samples.

3. An approximately optimal
blocking algorithm

We present a 4-approximation algorithm for the thres-
hold blocking problem. Outside of an initial construction
of a nearest neighbors graph, this algorithm has O(kn)
time and space complexity. Hence, it can be used in ex-
periments with millions of units. Although the algorithm
guarantees a threshold blocking with maximum within-
block cost no larger than 4λ, simulations indicate that
derived blockings are much closer to the optimum in prac-
tice.

3.1. The algorithm

Given the graph representation of the experimental sam-
ple, G = (V,E), and a pre-specified threshold k, the ap-
proximate blocking algorithm proceeds as follows:

1. Construct a (k− 1)-nearest neighbor subgraph of G.
Denote this graph Gnn = (V,Enn).

2. Find a maximal independent set of vertices, S, in
the second power of the (k−1)-nearest neighbor sub-
graph, G2

nn. Vertices in S are referred to as the block
seeds.

3. For each seed i ∈ S, create a block comprised of its
closed neighborhood in Gnn, Vi = NGnn

[i].

4. For each yet unassigned vertex, assign it to any block
that contains one of its adjacent vertices in Gnn.

3

When the algorithm terminates, the collection of blocks,
balg = {Vi}i∈S, is a valid threshold blocking of the ex-
perimental units that satisfies the optimality bound.

Informally, the algorithm constructs the blocking by se-
lecting suitable vertices, the seeds, from which the blocks
are grown. Seeds are spaced sufficiently far apart so as
not to interfere with each other’s growth, but they are
dense enough so that all non-seed vertices have a seed
nearby. Specifically, the second step of the algorithm pre-
vents any vertex from being adjacent to two distinct seeds
in the (k − 1)-nearest neighbor subgraph, but also never
more than a walk of two edges away from a seed. This en-
sures that the seeds’ closed neighborhoods do not overlap,
while vertices assigned to the same block are at a close
geodesic distance. Figure 1 illustrates how the algorithm
constructs blocks in an example sample.

3.2. Validity and complexity

We first prove that the algorithm is guaranteed to produce
a valid threshold blocking, and then its time and space
complexity.

Lemma 1 For any non-seed vertex, i /∈ S:

1. There exist no two seeds both adjacent to i in Gnn.

2. There exists a walk in Gnn of two or fewer edges from
i to the seed of the block that i is assigned to.

Proof. The lemma follows from that S is a maximal inde-
pendent set in G2

nn. Refer to the appendix for a complete
proof. �

Theorem 1 (Validity) The blocking algorithm pro-
duces a threshold blocking: balg ∈ Bk.

Proof. By Lemma 1, each vertex assigned in the third
step is adjacent to exactly one seed, thus it will be in
exactly one block. In the fourth step, vertices are assigned
to exactly one block each. This ensures that the blocks
are disjoint and span V , thus balg is a partition of V .

All seeds have at least k − 1 adjacent vertices in Gnn.
In the third step these vertices and the seeds themselves
will form the blocks ensuring that each block contains at
least k vertices. This satisfies Definition 1. �

Theorem 2 (Complexity) The blocking algorithm ter-
minates in polynomial time using O(kn) space.

Proof. Naively, the (k−1)-nearest neighbor subgraph can
be constructed by sorting each vertex’ edge costs and find-
ing its k− 1 nearest neighbors. Thus, Gnn is constructed
in at most O(n2 log n) time [19]. To enable constant time
access to the neighbors of any vertex, store the nearest
neighbor subgraph in n lists containing each vertex’ edges.

A B

C D

E F

Figure 1: An illustration of the approximation algorithm
for a sample with two-dimensional covariate data when a
minimum block size of two is desired (k = 2). (A) The
algorithm is provided with a set of data points and forms
the graph by drawing an edge between all possible pairs
of units. The edges are here omitted to ease presentation.
(B) A (k − 1)-nearest neighbor subgraph is constructed.
(C) The second power of the nearest neighbor subgraph
is derived, as shown by the edges, and a maximal inde-
pendent set is found, as shown by the red vertices (the
seeds). (D) All vertices adjacent to a seed in the near-
est neighbor subgraph are included in the blocks formed
by the seeds, as shown by the edges marked in red. (E)
The two yet unassigned vertices are assigned to the blocks
that contain one of their adjacent vertices in the nearest
neighbor subgraph. (F) The final blocking.

4

There can at most be (k−1)n edges in Gnn. This implies
an O(kn) space complexity for the edge lists.

Using the edge lists, a maximal independent set in the
second power of Gnn can be found in O(kn) time with-
out changing the space complexity. See the appendix for
details on this subroutine. The third step is completed
within O(n) time as Lemma 1 ensures that at most n
units will be assigned to blocks in this step and the edge
lists enables constant time access to the seeds’ neighbors.
In the fourth step, it will never be necessary to search
through all edge lists more than once, implying a com-
plexity of O(kn). �

Remark 1 After the initial construction of the (k − 1)-
nearest neighbor subgraph, the algorithm terminates in
O(kn) time. As the nearest neighbor search problem is
well-studied, the naive subroutine in the proof can be
improved on in most applications. In particular, most
experiments will have reasonably low-dimensional metric
spaces. Using specialized algorithms, the subgraph can in
that case be constructed in O(kn log n) expected time [20]
or worst-case time [21]. If the covariates are not few to
begin with, it is often advisable to use some dimension-
ality reduction technique before blocking so to extract the
most relevant information.

Run time can also be improved by using an approximate
nearest neighbor search algorithm. However, approximate
optimality is not guaranteed in that case.

Remark 2 It is rarely motivated to increase the block
size as the sample grows, thus k can be considered fixed
in the typical experiment. When k is fixed and one can
use a specialized procedure to derive the nearest neigh-
bor subgraph, the algorithm has O(n log n) time and O(n)
space complexity.

3.3. Approximate optimality

To prove the optimality bound, we will first show that the
edge costs in the (k − 1)-nearest neighbor subgraph are
bounded. As the algorithm ensures that vertices in the
same block are at a close geodesic distance in that sub-
graph, approximate optimality follows from the triangle
inequality.

Lemma 2 No edge cost in Gnn can be greater than the
maximum cost in the optimal blocking:

∀ij ∈ Enn, cij ≤ λ. (6)

Proof. Consider the graph:

Gλ = (V,Eλ = {ij ∈ E : cij ≤ λ}). (7)

For all edges in an optimal blocking, ij ∈ E(b∗), we have
cij ≤ λ from optimality. It follows that E(b∗) ⊆ Eλ.

Let c+ = max{cij : ij ∈ Enn} and consider:

G+ = (V,E+ = {ij ∈ E : cij < c+}). (8)

The minimum degree of this graph, δ (G+), must be less
than k−1. If not, a (k−1)-nearest neighbor graph exists
as a subgraph of G+. As this new graph does not contain
c+, it is contradictory that c+ is the maximum edge cost
in Gnn.

Suppose that c+ > λ. It then follows that Eλ ⊆ E+,
thus:

δ [G(b∗)] ≤ δ (Gλ) ≤ δ (G+) < k − 1. (9)

That is, there exists a vertex in G(b∗) with fewer than
k − 1 edges. It follows that there must exist a block
in G(b∗) with fewer than k vertices and, as Definition
1 then is violated, it cannot be a valid blocking. The
contradiction proves that c+ ≤ λ which bounds all edges
in Enn. �

Theorem 3 (Approximate optimality) The blocking
algorithm is a 4-approximation algorithm:

max
ij∈E(balg)

cij ≤ 4λ. (10)

Proof. Let balg denote the blocking produced by the al-
gorithm. Consider any within-block edge ij ∈ E(balg).
We must show that cij is bounded by 4λ.

If ij ∈ Enn, we have cij ≤ λ by Lemma 2. If ij /∈ Enn
and i /∈ S, j ∈ S, then by Lemma 1, there exists some
` so that i`, `j ∈ Enn. Lemma 2 applies to both these
edges. By Equation 1, the triangle inequality, it follows:

cij ≤ ci` + c`j ≤ λ+ λ = 2λ. (11)

If ij /∈ Enn and i, j /∈ S, let ` ∈ S be the seed in the
block that vertices i and j are assigned to. From above
we have ci`, c`j ≤ 2λ, and by the triangle inequality:

cij ≤ ci` + c`j ≤ 2λ+ 2λ = 4λ. (12)

As there is exactly one seed in each block, i, j ∈ S is
not possible and we have considered all edges in E(balg).
�

Remark 3 In some settings, a slight reduction in the
sample size is acceptable or required, e.g., for financial
constraints or when blocks are constructed before units
are sampled using secondary data sources. In these cases,
the algorithm can easily be altered into a 2-approximation
algorithm. By terminating at the end of the third step and
disregarding the unassigned vertices, one ensures that all
remaining vertices are at most a distance of λ from the
seed (where λ refers to the maximum distance in the op-
timal blocking of the selected subsample). Applying the
triangle inequality proves that all edge costs in the block-
ing of the subsample is bounded by 2λ. It is also possible

5

to apply a caliper to the blocking so to restrict the max-
imum possible edge cost by excluding some hard-to-block
vertices.

A concern when using a bottleneck objective is that
densely populated regions of the sample space will be ig-
nored as the blocks in these regions will not affect the
maximum edge cost. This is especially worrisome when
there are a few hard-to-block vertices that result in a
large λ. This can lead to poor performance as covariate
balance often can be improved by ensuring good block
assignments for all vertices. However, as the presented al-
gorithm does not directly use the bottleneck objective to
form the blocks, it avoids this issue. Instead, its optimal-
ity follows from the use of the nearest neighbor subgraph
as the basis of blocking, and this graph’s connection with
the optimal edge cost as shown in Lemma 2.

The following theorem shows that our algorithm leads
to approximate optimality not only in the complete sam-
ple, but also in all subsamples. Thus, if there is densely
populated region, the algorithm ensures that the blocking
is near-optimal also within that region.

Theorem 4 (Local approximate optimality) Let bsub ⊆
balg be any subset of blocks from a blocking constructed
by the algorithm. Define Vsub =

⋃
Vx∈bsub

Vx as the set
of all vertices contained in the blocks of bsub. Let λsub
denote the maximum edge cost in an optimal blocking of
Vsub. The subset of blocks is an approximately optimal
blocking of Vsub:

max
ij∈E(bsub)

cij ≤ 4λsub. (13)

Proof. Theorem 4 is proven in the appendix.

3.4. Heuristic improvements

The algorithm allows for several improvements of heuris-
tic character. While the guaranteed optimality bound
or complexity level remains unchanged, we expect these
changes to improve general performance. In particular,
the algorithm has a tendency to construct blocks that are
too large. While flexibility in the block size is beneficial—
the main idea behind threshold blocking—the current ver-
sion tends to overuse that liberty.

The first improvement exploits an asymmetry in the
nearest neighbor subgraph which currently is disregarded.
The cardinality condition is met as each seed and its k−1
nearest neighbors are assigned to the same block. How-
ever, in addition to those necessary neighbors, the current
version assigns vertices that have the seed as their near-
est neighbor to the block. With some minor alterations,
detailed in the appendix, the algorithm can use a (k−1)-
nearest neighbor digraph to form the blocks. This digraph
is such that an arc (i.e., directed edge) is drawn from i to

j if j is among the (k − 1) closest neighbors of i. Using
the digraph, one can differentiate whether a vertex is a
neighbor of the seed and vice versa.

There is rarely a unique maximal independent set in
the second power of the nearest neighbor graph (i.e., the
seeds). The current version selects one arbitrarily. The
second improvement is to choose the seeds more deliber-
ately. As each seed assigns at least k − 1 vertices to its
block, a straight-forward way to reduce the block sizes
is to maximize the number of seeds—a larger set is ex-
pected to produce better blockings. The ideal may be the
maximum independent set, but deriving such a set is a
NP-hard problem. Most heuristic algorithms are, how-
ever, expected to perform well.

Third, despite the above improvements, the algorithm
will occasionally produce blocks that a much larger than
k. Whenever a block contains 2k or more vertices it can
safely be split into two or more blocks, each containing
at least k vertices. As the algorithm ensures that all edge
costs satisfy the optimality bound and no edges are added
by splitting, this can only lower the maximum within-
block cost. In the appendix, we describe a greedy thres-
hold algorithm for splitting blocks that runs fast and is
expected to perform well. This greedy algorithm can also
be used to block the complete sample, but will not per-
form on par with the approximation algorithm.

A fourth improvement changes how vertices are as-
signed in the fourth step. With larger desired block sizes,
some blocks may contain peripheral vertices that are far
from their seeds. In these cases, it is often beneficial to
assign the remaining vertices in the fourth step to the
block containing their closest seed instead of the block
containing a closest neighbor. This avoids the situation
where a vertex is assigned to distant block due to hav-
ing a peripheral vertex close by. The optimality bound is
maintained as Theorem 3 ensures that at least one seed
exists at a distance of at most 2λ. If a vertex is not as-
signed to that seed, it must have been assigned to a seed
that is at a closer distance.

Finally, once a blocking is derived, searching for moves
or swaps of vertices between blocks can lead to improve-
ments as in other partitioning problems [22]. It is, how-
ever, not feasible to let such searches continue until no
additional improvements are possible (i.e., until a local
optimal is found) as the flexible block structure allows
for a vast number of moves and swaps.

4. Simulation study

We provide the results from a small simulation study.
Apart from the original algorithm, we include versions
that employ the improvements discussed in the previ-
ous section. Specifically, we include a version using the

6

nearest neighbor digraph (the first improvement) and a
version using the first three improvements. A version
that uses all four improvements is generally only bene-
ficial with larger block sizes and is included when such
settings are investigated in the appendix.

For comparison, we also include the greedy threshold
blocking algorithm discussed in the appendix and the cur-
rently best-performing greedy fixed-sized blocking algo-
rithm [13]. When k = 2, we can also include a commonly
used implementation of the non-bipartite matching algo-
rithm [12].

We investigate a simple setting where each data point is
sampled independently from a uniform distribution over
a two-dimensional plane:

x1, x2 ∼ U (0, 10) , (14)

and similarity is measured as the Euclidean distance on
this plane. While many experiments will have data with
higher dimensions, it is often not motivated to include
all those dimensions when deriving blocks. Typically, one
wants to reduce the dimensionality in a preprocessing step
to extract the information that is most predictive of the
potential outcomes [23]. The investigated algorithms are,
however, not restricted to low-dimensional data.

All simulations are run on a single CPU core reflect-
ing the performance of a modern desktop computer. See
the appendix for details about the implementation of the
algorithm and the hardware used to run the simulations.

4.1. Run time and memory

To investigate the resource requirements, we let each algo-
rithm block samples containing between one hundred and
100 million data points generated from the model above.
Each setting was replicated 250 times. As time and mem-
ory usage are quite stable over the runs, these replications
suffice to investigate even small differences. In these sim-
ulations, the directed version performs almost identically
to the original version, and it is omitted from the graphs
to ease presentation.

Figure 2 presents the time and memory needed for the
algorithms to successfully terminate. All versions of the
approximation algorithm run fast and terminate within a
minute for samples sizes up to a few millions. With 100
million data points the original version terminates within
11 minutes while the version will all three refinements
does so in less than 16 minutes—all very manageable in
real applications. Memory usage is increasing linearly at a
slow rate for both versions. A modern desktop computer
would have enough memory to block samples with tens
of millions of units without problems.

The three comparison algorithms paint another pic-
ture altogether. For the rather modest sample size of
20,000 data points, these algorithms take more than 20

minutes—up to two hours—to terminate. Even more
problematic is their extensive memory use. For samples
larger than 50,000 data points, all three algorithms try to
allocate more than 48 gigabytes of memory; under these
settings, these algorithms do not terminate successfully,
and no results can be shown.

Detailed results for these simulations and simulations
with input data with higher dimensionality are presented
in Tables 3, 4 and 5 in the appendix.

4.2. Minimizing distances

To investigate how well the algorithms minimize dis-
tances, we increase the number of replications to 5,000;
this statistic is less stable and the differences between
algorithms are smaller. However, with this number of
replications, no difference can be attributed to simulation
error.

The first panel of Table 1 shows the maximum within-
block distance, averaged over the simulation rounds,
when the desired minimum block size is two. Refer to
Table 6 in the appendix for results when the desired min-
imum block size is four. We report values normalized by
the performance of the approximation algorithm to ease
interpretation. The two improved versions of the approx-
imation algorithm lead to quite substantial decreases in
the maximum distance. All versions of the approximation
algorithm outperform the two greedy algorithms—for the
fixed-sized version, drastically so. However, only the ver-
sion with all three improvements performs better than
non-bipartite matching.

In the second panel, the average within-block distance
is presented. This is the objective of the greedy fixed-
sized algorithm and non-bipartite matching, so it is not
surprising that these algorithms show better performance
on this statistic. Non-bipartite matching is here the best
performing algorithm and only the approximation algo-
rithm with full improvements outperforms the fixed-sized
greedy algorithm.

The last panel presents the average size of the blocks
produced by the different algorithms. The improvements
discussed in the preceding section are shown to be effec-
tive in taming the original algorithm’s tendency to con-
struct blocks that are too large. However, smaller blocks
do not automatically lead to better performance. This is
evident from the greedy threshold algorithm which pro-
duces smaller blocks than the approximation algorithms
but has worse performance. The two fixed-sized blocking
algorithms produce blocks of constant size by construc-
tion.

7

●

●

●

●

●

●

A

0

10

20

30

40

50

60

0 10k 20k 30k 40k

Data points (in thousands)

M
in

ut
es

B

0

10

20

30

40

50

60

0 20M 40M 60M 80M 100M

Data points (in millions)

Algorithms

●

Approximation algorithm

Improvements 1−3

Greedy (fixed)

Greedy (threshold)

Non−bipartite matching

Run time in minutes

●

●

●

●

●

●

●
●

C

0

10

20

30

40

48

0 10k 20k 30k 40k

Data points (in thousands)

G
ig

ab
yt

es

D

0

10

20

30

40

48

0 20M 40M 60M 80M 100M

Data points (in millions)

Memory usage in gigabytes

Figure 2: Run time (A, B) and memory usage (C, D) of five blocking algorithms with two-dimensional input data
over a range of sample sizes. Marker symbols are actual simulation results, and the connecting lines are interpolations.
Results are presented with different scales due to the large differences in performance. Results are presented for all
algorithms for sample sizes up to 40,000 data points (A, C) while results for sample sizes up to 100 million data
points are only shown for the two approximation algorithms (B, D). No simulations were successful for the greedy
algorithms and non-bipartite matching for sample sizes larger than 20,000 due to excessive run time or memory use.
The approximation algorithm presented in the paper (shown in red) has almost identical run time and memory usage
as the version using the nearest neighbor digraph, as described in the section on heuristic improvements, and its results
are not shown in the figure. See Table 3 in the appendix for detailed results.

Table 1: Performance of blocking algorithms by sample size: maximum and average within-block distances relative to
the approximation algorithm and average block size

Max. within-block distance Avg. within-block distance Avg. block size

Algorithm 102 103 104 102 103 104 102 103 104

Approximation algorithm 1.000 1.000 1.000 1.000 1.000 1.000 2.67 2.66 2.66

Directed version 0.917 0.895 0.883 0.933 0.933 0.933 2.55 2.54 2.54

Improvements 1-3 0.791 0.755 0.729 0.825 0.826 0.826 2.31 2.30 2.30

Fixed greedy 3.126 8.149 21.938 0.931 0.924 0.908 2.00 2.00 2.00

Threshold greedy 1.076 1.148 1.191 1.079 1.116 1.127 2.33 2.33 2.33

Non-bipartite matching 0.838 0.795 0.765 0.742 0.732 0.728 2.00 2.00 2.00

8

4.3. Reducing uncertainty

To investigate how the blockings affect an estimator’s per-
formance, one must specify a data generating process for
the outcome. The results are highly sensitive to the de-
tails of this process. Even blockings that are optimal
with respect to within-block distances need not lead to
the lowest variance. An extensive investigation is beyond
the scope of this paper and we provide only indicative
results.

We consider a simple setting with two treatment condi-
tions when the desired minimum block size is two. Refer
to Table 7 in the appendix for results when the minimum
block size is four. The outcome (y) is the product of the
covariates with additive, normally distributed noise:

y = x1x2 + ε, ε ∼ N (0, 1) . (15)

Note that the treatment does not enter into the model
and thus has no effect—the potential outcomes are equal.
The covariates are highly predictive in this model—more
so than one can expect in a real application. This en-
ables the methods to make the most out of the covariate
information and helps us differentiate between the algo-
rithms’ performances. For all blocking methods, we will
use the block-size weighted difference-in-means estimator
to estimate treatment effects. Refer to the appendix for
additional details on estimation. We run 5,000 replica-
tions in this setting and results are presented relative to
the approximation algorithm. Tables 8 and 9 in the ap-
pendix present the results without normalization.

Table 2 presents results for the root of the average
squared difference between estimates and the true treat-
ment effect (RMSE) for each method’s estimator. All
blocking methods with proven optimality level perform
well. For the smaller sample sizes, the approximation al-
gorithm with all three improvements performs best, while
non-bipartite matching is slightly better in the larger
samples. All blocking methods seem, however, to con-
verge as the sample size grows.

In addition to the six blocking methods, Table 2 in-
cludes the results of two methods that do not use block-
ing. In both cases, the RMSE is markedly higher than
any of the methods using blocking. When controlling for
imbalances using ordinary least squares regression, the
RMSE is at least twice as large as that of any blocking
method with proven optimality. When the estimate is
completely unadjusted for imbalances, the RMSE is up
to 20 times higher than for the approximation algorithm.
However, this difference certainly overstates the benefits
of blocking that one can expect in real applications as the
covariates are unusually predictive in this simulation.

Table 2: Root mean square error relative to the approx-
imation algorithm by sample size

Method 102 103 104

Approximation algorithm 1.000 1.000 1.000

Directed version 0.973 0.987 0.999

Improvements 1-3 0.931 0.960 0.992

Fixed greedy 1.609 1.598 1.152

Threshold greedy 1.207 1.146 1.041

Non-bipartite matching 0.952 0.949 0.983

Unadjusted 6.092 15.158 20.710

OLS adjustment 2.352 5.776 7.900

5. Discussion

Our approximation algorithm enables large and complex
experiments to make use of blocking. No feasible algo-
rithm with proven optimality properties has been avail-
able for massive experiments. Although many of the com-
monly used blocking algorithms run in polynomial time,
none run in quasilinear time as the approximation algo-
rithm does. Polynomial time is not a sufficient condition
for tractability with very large data [24]. One can see this
in our simulations.

The threshold blocking algorithm is expected to per-
form well in most cases given its approximate optimality.
However, non-bipartite matching, when it is feasible, is
likely the best choice in experiments with matched-pair
designs because it is exactly optimal. Our simulation re-
sults seem to point towards this conclusion as well. The
matched-pair design is, however, limited to the case of
only two treatment conditions, and the design compli-
cates the estimation of standard errors because block sizes
of larger than two are sometimes needed; for example, to
estimate conditional variances [25]. Our approximation
algorithm is therefore an important arrow in the quiver
of experimental design.

Whenever blocking reduces imbalances in prognosti-
cally important covariates, blocking will improve the ex-
pected precision of estimates. In some settings, even
when the covariates contain no information about the
outcomes, blocking cannot increase the variance of the
treatment effect estimator compared to when no blocking
is done [25, 26]. However, theoretical results depend on
the randomization model, estimand, and estimator used.
There are some rare instances where blocking may de-
crease precision.

As an alternative to blocking, some advocate re-
randomization when a given randomization results in
poor balance in observed covariates [27, 28]. Re-
randomization restricts the randomization scheme, as as-
signments with poor balance are ruled out. If the rule for

9

which randomizations are acceptable is precise and set a
priori, randomization inference is well-defined. One wor-
ries, however, that researchers will not use well-specified
rules that they will later recall to restrict randomization
distributions. Especially if the initial randomization re-
sults in good balance, it is doubtful that investigators will
adjust their test levels as they had planned.

Far more common than blocking or re-randomization
are ex post methods of adjusting experimental data such
as post-stratification or using a model-based estimator
that incorporates covariate information. Such methods
can work well. For example, post-stratification is nearly
as efficient as blocking: the difference in their variances
is on the order of 1/n2, with a constant depending on
treatment proportion [29]. However, post-stratification
can increase variance if the number of strata is large and
the strata are poorly chosen. Regression adjustment can
provide significant gains in precision [30, 31], and model-
based hypothesis tests can be asymptotically valid even
when the adjustment model is misspecified [32]. How-
ever, regression adjustment, like post-stratification, may
increase the finite sample variance, and will do so on av-
erage for any sample size, if the covariates are not infor-
mative [33].

A key argument in favor of blocking as opposed to ex
post adjustment is that one is increasing the transparency
of the analysis by building covariate adjustment into the
experimental design. The results cited regarding post-
stratification and model adjustment assume that the in-
vestigator did not pick the strata or model as a function of
the realized treatment assignment. One further assumes
that the investigator does not run a number of adjustment
models, and then only report the one with the desired re-
sults. Human nature being what it is, this assumption
is probably optimistic. A major benefit of randomized
experiments, aside from the randomization, is that the
design stage is separated from the analysis stage by con-
struction [34]. Blocking allows one to use design-based
estimators that adjust for covariate information [35]. The
less that there is to do at the analysis stage, the less likely
it is that the investigator will fish for particular results,
unconsciously or not.

When researchers select adjustment models based on
observed p-values, it is called p-hacking, and the habit
appears to be prevalent [9]. Because of concerns about
p-hacking, there has been a move towards creating pre-
analysis plans for experimental studies both in medicine
and the social sciences. Such plans force researchers to
lay out in advance how they will analyze the experiment
and what subgroups and outcomes are of primary inter-
est. Unfortunately, evidence from medicine, where the
practice is best established, shows that pre-analysis plans
are often ignored and allow significant leeway in selec-
tion of covariates, subgroups, outcomes, and adjustment

methods, and readers and reviewers are rarely informed
of departures [36]. Blocking allows one to encode into the
design of a study the covariates the investigator a pri-
ori thinks are important. After randomization, one may
still adjust for these variables as small imbalances may
remain. Blocking then acts as an effective signal that the
investigator intended to do such adjustments before see-
ing initial results. Moreover, some covariates may not be
measured at the time of randomization, and they could
be adjusted ex post, although concerns about p-hacking
may arise.

Finally, blocking is motivated by partial knowledge
about how the covariates relate to the outcomes. The
performance of any blocking algorithm depends on how
well the chosen similarity measure captures this relation-
ship. As this choice is subject-specific, general recommen-
dations are hard to come by. However, as noted in our
remarks, if one has many covariates, some dimension re-
duction to those that most likely relate to the outcomes
is often advantageous. If more complete knowledge ex-
ists, such as a good estimate of the potential outcomes
under control, one would gain more precision by directly
blocking on that estimate.

There are no free lunches in statistics, but blocking
comes close. It has few downsides and risks relative to
complete randomization, other than computational chal-
lenges, and any experimenter should be motivated to
block their sample. In this paper, we have enabled the
technique for experiments where it previously was infea-
sible. Fast, near-optimal algorithms could be useful also
when ex post adjustments are needed, e.g. when the in-
vestigator has no or limited control over treatment as-
signment. While the our algorithm is not directly ap-
plicable to these settings, we plan to extend it to post-
stratification, matching and clustering in future work. We
also plan to analyze the properties of different estimators,
and how they differ between threshold versus fixed-sized
blocking [15, 37].

References

[1] Rubin DB (2008) Comment: The design and analysis
of gold standard randomized experiments. J Am Stat
Assoc 103(484):1350–1353.

[2] Fisher RA (1926) The arrangement of field exper-
iments. Journal of the Ministry of Agriculture of
Great Britain 33:503–513.

[3] Lewis R, Rao J (2015) The unfavorable economics
of measuring the returns to advertising. Q J Econ
130(4). In press.

[4] Fithian W, Wager S (2015) Semiparametric expo-

10

nential families for heavy-tailed data. Biometrika
102(2):486–493.

[5] Jones JJ, Bond RM, Bakshy E, Eckles D, Fowler
JH (2015) Social influence and political mobilization:
Further evidence from a randomized experiment in
the 2012 U.S. presidential election. PNAS Big Data
and Causality Colloquium paper.

[6] Athey S, Imbens G (2015) Machine learning methods
for estimating heterogeneous causal effects. PNAS
Big Data and Causality Colloquium paper.

[7] Ashley EA (2015) The precision medicine initiative:
A new national effort. JAMA 313(21):2119–2120.

[8] Permutt T (1990) Testing for imbalance of covari-
ates in controlled experiments. Stat Med 9(12):1455–
1462.

[9] Simmons JP, Nelson LD, Simonsohn U (2011) False-
positive psychology: Undisclosed flexibility in data
collection and analysis allows presenting anything as
significant. Psychol Sci 22(11):1359–1366.

[10] Speed TP (1992) in Breakthroughs in Statistics,
Springer Series in Statistics, eds. Kotz S, Johnson
NL. (Springer, New York), pp. 71–81.

[11] Imai K, King G, Nall C (2009) The essential role
of pair matching in cluster-randomized experiments,
with application to the Mexican universal health in-
surance evaluation. Stat Sci 24(1):29–53.

[12] Greevy R, Lu B, Silber JH, Rosenbaum P (2004) Op-
timal multivariate matching before randomization.
Biostatistics 5(2):263–275.

[13] Moore RT (2012) Multivariate continuous blocking
to improve political science experiments. Polit Anal
20(4):460–479.

[14] Rosenbaum PR (1989) Optimal matching for obser-
vational studies. J Am Stat Assoc 84(408):1024–
1032.

[15] Sävje F (2015) The performance and efficiency of
threshold blocking. arXiv:1506.02824.

[16] Cochran WG (1965) The planning of observational
studies of human populations. J R Stat Soc Ser A
128(2):234–266.

[17] Iacus SM, King G, Porro G (2011) Multivariate
matching methods that are monotonic imbalance
bounding. J Am Stat Assoc 106(493):345–361.

[18] Hochbaum DS, Shmoys DB (1986) A unified ap-
proach to approximation algorithms for bottleneck
problems. Journal of the ACM 33(3):533–550.

[19] Knuth DE (1998) Sorting and searching, The Art
of Computer Programming. (Addison Wesley Long-
man, Redwood City, CA) Vol. 3, 2th edition.

[20] Friedman JH, Bentley JL, Finkel RA (1977) An al-
gorithm for finding best matches in logarithmic ex-
pected time. ACM Trans Math Softw 3(3):209–226.

[21] Vaidya PM (1989) An o(n log n) algorithm for
the all-nearest-neighbors problem. Discrete Comput
Geom 4(1):101–115.

[22] Kernighan B, Lin S (1970) An efficient heuristic pro-
cedure for partitioning graphs. Bell Syst Tech J
49(2):291–307.

[23] Imbens GW, Rubin DB (2015) Causal Inference for
Statistics, Social, and Biomedical Sciences. (Cam-
bridge University Press, New York).

[24] National Research Council (2013) Frontiers in mas-
sive data analysis. (The National Academies Press,
Washington, DC).

[25] Imbens G (2011) Experimental design for unit and
cluster randomized trials. International Initiative for
Impact Evaluations.

[26] Imai K (2008) Variance identification and effi-
ciency analysis in randomized experiments under the
matched-pair design. Stat Med 27(24):4857–4873.

[27] Hayes RJ, Moulton LH (2009) Cluster randomised
trials. (CRC press, London).

[28] Morgan KL, Rubin DB (2012) Rerandomization to
improve covariate balance in experiments. Ann Stat
40(2):1263–1282.

[29] Miratrix LW, Sekhon JS, Yu B (2013) Adjusting
treatment effect estimates by post-stratification in
randomized experiments. J R Stat Soc Series B Stat
Methodol 75(2):369–396.

[30] Bloniarz A, Liu H, Zhang CH, Sekhon JS, Yu B
(2015) Lasso adjustments of treatment effect esti-
mates in randomized experiments. PNAS Big Data
and Causality Colloquium paper.

[31] Rosenblum M, van der Laan MJ (2010) Simple, ef-
ficient estimators of treatment effects in random-
ized trials using generalized linear models to leverage
baseline variables. Int J Biostat 6(1).

[32] Rosenblum M, van der Laan MJ (2009) Using regres-
sion models to analyze randomized trials: Asymptot-
ically valid hypothesis tests despite incorrectly spec-
ified models. Biometrics 65(3):937–945.

11

[33] Lin W (2013) Agnostic notes on regression adjust-
ments to experimental data: Reexamining Freed-
man’s critique. Ann Appl Stat 7(1):295–318.

[34] Rubin DB (2008) For objective causal inference, de-
sign trumps analysis. Ann Appl Stat 2(3):808–840.

[35] Aronow PM, Middleton JA (2013) A class of un-
biased estimators of the average treatment effect
in randomized experiments. J Causal Inference
1(1):135–154.

[36] Humphreys M, de la Sierra RS, van der Windt P
(2013) Fishing, commitment, and communication: A
proposal for comprehensive nonbinding research reg-
istration. Polit Anal 21(1):1–20.

[37] Higgins M, Sävje F, Sekhon JS (2015) Blocking
estimators and inference under the Neyman-Rubin
model. arXiv:1510.01103.

[38] Kirkpatrick DG, Hell P (1978) On the completeness
of a generalized matching problem, Proceedings of
the Tenth Annual ACM Symposium on Theory of
Computing. (ACM, New York), pp. 240–245.

[39] Chen Y, Davis TA, Hager WW, Rajamanickam
S (2008) Algorithm 887: CHOLMOD, supernodal
sparse cholesky factorization and update/downdate.
ACM Trans Math Softw 35(3):22:1–22:14.

Appendices

A. Graph theoretical definitions

Let G = (V,E) be an arbitrary graph.

Complete graph G is complete if ij ∈ E for any two
vertices i, j ∈ V . A complete graph with n vertices
is denoted Kn.

Spanning A graph G′ = (V,E′) is a spanning subgraph
of G if they contain the same set of vertices and E′ ⊆
E.

Induced A subgraph G′ = G[V ′] = (V ′, E′) is induced
on G by V ′ ⊆ V if G′ contains all edges in ij ∈ E
that connects vertices in V ′ and no other edges:

E′ ≡ {ij ∈ E : i, j ∈ V ′}.

Adjacent Vertices i and j are adjacent in G if ij ∈ E.

Degree The degree of vertex i in G is its number of
adjacent vertices:

deg(i) ≡ |{j ∈ V : ij ∈ E}|.

Minimum degree The minimum degree, δ (G), of G is
the minimum degree among the vertices in G:

δ (G) ≡ min
i∈V

deg(i)

Neighborhood A neighborhood of vertex i, NG(i), in G
is the set of vertices adjacent to i:

NG(i) ≡ {j ∈ V : ij ∈ E}.

A closed neighborhood also contains i: NG[i] ≡ NG(i) ∪ i.

Independent set A set of vertices I ⊆ V is independent
in G if no vertices in the set are adjacent:

@ i, j ∈ I, ij ∈ E.

Maximal independent set An independent set of ver-
tices I in G is maximal if for any additional vertex
i ∈ V the set i ∪ I is not independent:

∀ i ∈ V \ I, ∃ j ∈ I, ij ∈ E.

The maximum independent set in G is the maximal
independent set with the largest cardinality among
all independent set in G.

Walk A walk from i = k0 to j = km of length m in G
is a (m+ 1)-tuple of vertices, with an edge between
each adjacent pair, connecting i and j:

(k0, k1, · · · , km) : ∀ 1 ≤ ` ≤ m, k`−1k` ∈ E.

Power The dth power ofG is a graphGd = (V,Ed) where
an edge ij ∈ Ed if there exists a walk from i to j in
G of d or fewer edges.

Partition A partition of V is a set of subsets p =
{V1, . . . , Vm} satisfying:

1. (Non-empty) ∀ Vx ∈ p, ∅ 6= Vx ⊆ V ,

2. (Disjoint) ∀ Vx, Vy ∈ p, (Vx 6= Vy) ⇒ (Vx ∩
Vy = ∅),

3. (Spanning)
⋃
Vx∈p Vx = V .

Nearest neighbor subgraph The k-nearest-neighbor
subgraph of G is a subgraph Gnn = (V,Enn) where
an edge ij ∈ Enn only if j is one of the k nearest
vertices to i or i is one of the k nearest vertices to j:

Enn = {ij ∈ E : (i, j) ∈ Ednn ∨ (j, i) ∈ Ednn} .

Nearest neighbor digraph The k-nearest-neighbor di-
graph of G is a directed subgraph Gdnn = (V,Ednn)
where an arc (i, j) ∈ Ednn only if j is one of the k
nearest vertices to i. Rigorously, for a vertex i, let
i(`) denote the vertex j that corresponds to the `th

12

smallest value of {cij : ij ∈ E} (where ties are broken
arbitrarily but deterministically):

cii(1) ≤ cii(2) ≤ · · · ,

then:

Ednn =
{

(i, j) : ij ∈ E ∧ j ∈ {i(`)}k`=1

}
.

B. Proof of NP-hardness

We prove NP-hardness by showing that a partition prob-
lem considered by Kirkpatrick and Hell [38] can be re-
duced to the bottleneck threshold blocking problem. For
an arbitrary graph G = (V,E), the PART [{Kt : t ≥ k}]-
problem asks whether there exists a set of subgraphs G =
{G1 = (V1, E1), · · · , Gm} of G such that {V1, . . . , Vm} is
a partition of V and each subgraph Gx ∈ G is isomorphic
to a complete graph with k or more vertices, Kt≥k. This
problem is NP-complete for any k ≥ 3 [38].

Theorem 5 Let ε > 0. The bottleneck threshold blocking
problem with minimum block size k ≥ 3 does not allow for
a polynomial time (2− ε)-approximation algorithm unless
P = NP.

Proof. Consider an instance of the PART [{Kt : t ≥ k}]-
problem on a graph G = (V,E). Create a weighted com-
plete graph, H = (V,E′), that shares the vertex set with
G. For all edges ij ∈ E′, let the corresponding costs be:

cij =

{
1, if ij ∈ E,
2, if ij /∈ E. (16)

These costs satisfy the triangle inequality. Note that for
any cost ratio higher than two between the two types of
edges, the triangle inequality will be violated for some
input graph.

We consider solving the bottleneck threshold blocking
problem on H. We show that the minimum maximum
within-block cost λ = 1 if and only if PART [{Kt : t ≥ k}]
is true. Since λ ∈ {1, 2}, it follows that λ = 2 if
and only if PART [{Kt : t ≥ k}] is false. Hence, any
(2 − ε)-approximation algorithm will produce a blocking
with maximum within-block distance of 1 if and only if
PART [{Kt : t ≥ k}] is true, and hence, can be used to
solve PART [{Kt : t ≥ k}]. Thus, such an algorithm ter-
minates in polynomial time only if P = NP.

Suppose λ = 1. Consider an optimal blocking b∗ =
{V1, . . . , Vm} of H and the set of subgraphs induced on
the input graph by the components of the blocking:

G = {G[V1], G[V2], · · · , G[Vm]} . (17)

All ij ∈ E′(b∗) have cost cij = 1, and so, must exist
in G. Thus all blocks induced on G must be isomorphic

to a complete graph. Furthermore, as H and G share
the same vertex set and b∗ partitions H, G partitions G.
It follows that G is a valid {Kt : t ≥ k}-partition and
PART [{Kt : t ≥ k}] is true.

Suppose PART [{Kt : t ≥ k}] is true. Let G =
{G1 = (V1, E1), · · · , Gm = (Vm, Em)} denote a {Kt : t ≥
k}-partition. Consider a blocking constructed from the
vertex sets of G: p = {V1, · · · , Vm}. As all subgraphs
in G are complete, the within-block edges are exactly
E1 ∪ E2 ∪ · · · ∪ Em. As these edges exist in G, the cor-
responding edge costs in H are one. Thus the maximum
edge cost in the blocking given by b is λ = 1. �

C. Proof of Lemma 1

Lemma 1 states that:

1. For any i /∈ S, there exists no two seeds both adjacent
to i in Gnn:

∀j, ` ∈ S, ij /∈ Enn ∨ i` /∈ Enn. (18)

2. For any i /∈ S, let j ∈ S denote the seed of the block
that i is assigned to. There exists a walk of two or
fewer edges from i to j in Gnn:

ij ∈ Enn ∨ ∃`, i`, `j ∈ Enn. (19)

If the first statement is false, then there exists a walk of
two edges between j and `, going through i. This implies
that j and ` are adjacent in G2

nn, but this contradicts the
definition of S as an independent set of G2

nn.
The second statement follows from how vertices are as-

signed to blocks. Vertices assigned in the third step of the
algorithm are, by construction, adjacent to their block
seeds in Gnn. Vertices assigned in the fourth step are ad-
jacent in Gnn to a vertex in their block that is assigned
in the third step. This vertex (i.e., `) is in turn adjacent
to the block seed, forming a walk of two edges from i
to j. Every vertex unassigned after the third step must
be adjacent to at least one vertex in the closed neighbor-
hood of a block seed. Otherwise, there is no walk of two
edges from that unassigned vertex to a block seed; hence,
that unassigned vertex is independent of all block seeds
in G2

nn, contradicting the maximality of S.

D. Subroutine for the second step of
the algorithm

The obvious way to derive the seeds is to construct the
second power of the (k − 1)-nearest neighbor subgraph
and then find a maximal independent set in this graph
using conventional algorithms. The second power will,

13

however, not always to be a sparse matrix, even when k
is fixed, and this procedure will therefore increase time
and space complexity. Using the subroutine presented in
this section gives a complexity of O(kn) independently of
how Gnn is structured.

As discussed in the paper, we store the (k− 1)-nearest
neighbor subgraph using edge lists for all vertices. This
allows for access to a vertex’ edges with constant time
complexity. Consider the following procedure that takes
these edge lists as input:

1. Initialize S and A to the empty set.

2. Let i iterate over all vertices in V :

a) If the closed neighborhood of i contains any ver-
tex in A, NGnn

[i]∩A 6= ∅, continue to the next
iteration.

b) Else, set S← S ∪ i and A← A ∪NGnn
[i].

When this routine terminates, the set S will be a maxi-
mal independent set in G2

nn. This can be shown with a
proof by contradiction. Note that, at any iteration of the
loop, A contains all vertices in S and all of their adjacent
vertices.

Suppose that S is not independent. Two i, j ∈ S that
are adjacent in the second power must then exist. That
is, either ij ∈ Enn or, for some `, we have i`, `j ∈ Enn.
As vertices are added to S sequentially, a state must have
existed such that (with arbitrary labeling):

i ∈ S, j /∈ S, and NGnn [j] ∩A = ∅. (20)

If not, j would not have been added to S when its iteration
came. When i was added to S, it and all of its neighbors
were added to A. This implies that if ij ∈ Enn, then j
is in A, and if ` exists so that i`, `j ∈ Enn, then ` ∈ A.
Subsequently, such state is not possible and S must be
independent.

Suppose that S is not maximal. There must then exists
an i ∈ V \ S which is not adjacent to any vertex in S in
G2
nn when the algorithm terminates. This implies that

NGnn [i] ∩ A = ∅ is true. As vertices only are added to
A, this must also have been true throughout the run of
the algorithm. But if NGnn

[i] ∩A = ∅ always was true,
i would have been added to S in its iteration. The algo-
rithm can therefore not terminate with such a state and
S must be maximal.

To show complexity, note that in the worst case, one
has to check whether each vertex’ closed neighborhood is
in A. As there can be at most 2(k−1)n entries in the edge
lists, there are at most O(kn) checks needed. By storing
set membership in a random access data structure, set
queries are done in O(1) time, which gives a complexity
of O(kn) for the complete subroutine.

A straightforward way to incorporate the second
heuristic improvement discussed in the paper is to change
the order which the subroutine iterates over the vertices.

E. Proof of Theorem 4

Theorem 4 states that any subset of blocks from a block-
ing constructed by the algorithm, bsub ⊆ balg, will be ap-
proximately optimal with respect to the blocking problem
only containing vertices in the blocks of bsub. Formally,
define Vsub =

⋃
Vx∈bsub

Vx as the set of all vertices in the
blocks of bsub. Let λsub denote the maximum edge cost
in an optimal blocking of Vsub. Theorem 4 states that:

max
ij∈E(bsub)

cij ≤ 4λsub. (21)

Let Gsub denote the complete graph on Vsub. Recall
that Gnn = (V,Enn) is the (k − 1)-nearest neighbor sub-
graph of G. Let Gind = (Vsub, Eind) = Gnn[Vsub] denote
the graph induced by Vsub on Gnn. That is, Eind contains
all edges in Enn between vertices that are in Vsub. Finally,
let Gsub,nn = (Vsub, Esub,nn) denote the (k − 1)-nearest
neighbor subgraph of Gsub.

Observe that Eind ⊂ Esub,nn: if i, j ∈ Vsub and j is one
of the (k−1) nearest neighbors of i in G, then it also must
be one of the (k − 1)-nearest neighbors of i in Gsub ⊂ G.
From Lemma 2, we have that ∀ij ∈ Esub,nn, cij ≤ λsub,
and so, ∀ij ∈ Eind, cij ≤ λsub.

As implied by Lemma 1, there is a walk in Gnn of
four or fewer within-block edges between any two vertices
contained in the same block in balg. As Gind retains all
within-block edges in Gnn of the blocks in bsub, there is a
walk of four or fewer between any two vertices in the same
block also in Gind. Theorem 3 can, therefore, be applied
using Eind in place of Enn. This bounds all within-block
edge costs in bsub by 4λsub.

F. Algorithm using nearest-neighbor
digraphs

The approximation algorithm presented in the paper
tends to construct too large blocks. A slightly modified
version using a k-nearest-neighbor digraph will often pro-
duce better blockings. In particular, to avoid collisions,
one only needs to ensure that no seed adds a vertex to
its block that is either a seed itself or which some other
seed want to add to its block. The undirected version
enforce that no non-seed vertex wants to add a seed if it
was to be a seed—an unnecessary requirement which the
digraph avoids.

Redefine NG[i] to be the directed version of a closed
neighborhood:

NG[i] ≡ {j ∈ V : (i, j) ∈ E} ∪ i. (22)

14

Consider the following algorithm that takes the graph, G,
describing the experimental sample as input:

1. Construct a (k − 1)-nearest neighbor digraph of G
so that an arc (i, j) exists if j is among the (k − 1)
nearest neighbors of i. Denote that graph Gdnn =
(V,Ednn).

2. Find a set of vertices, S, so that:

a) There exist no i, j ∈ S so that (i, j) ∈ Ednn.

b) There exist no i, j ∈ S and ` ∈ V \ S so that
(i, `) ∈ Ednn and (j, `) ∈ Ednn.

c) Adding any i ∈ V \ S to S would violate either
(a) or (b).

3. For each i ∈ S form a block with that vertex and all
of its adjacent vertices: Vi = NGdnn

[i].

4. Assign vertices that are yet unassigned to a block
that contains one of their nearest assigned neighbors.
That is, for an unassigned vertex i assign it to any
Vx such that ∃ j ∈ Vx : (i, j) ∈ Ednn.

An illustration of this algorithm, with a comparison to
the undirected version, is given in Figure 3.

The resulting blocking is approximately optimal for the
same reasons as for the original algorithm. The second
step ensures that no two seeds have outward-pointing arcs
to the same vertex. This makes the blocking disjoint and
satisfying the size requirement. The second step also en-
sures that all vertices are at most two arcs (of any direc-
tionality) away from their seeds and, following the same
proof as in the paper, all vertices are at distance of at
most 2λ from their seeds. By the triangle inequality this
proves approximate optimality.

The (k− 1)-nearest neighbor digraph will have exactly
(k−1)n arcs and can thus be stored in O(kn). With only
trivial changes the steps of this algorithm can be done in
the same way as in the original version, thus preserving
complexity. In particular, the subroutine presented in the
previous section can still be used to complete the second
step when NG[i] is redefined to the directed version as
above.

G. Greedy threshold algorithm

The third heuristic improvement discussed in the paper
is to split blocks that contain 2k or more vertices into
smaller blocks. Any algorithm can be used to do this split
as the approximation algorithm ensures that all edges sat-
isfy the optimality bound. One approach would be to use
the approximation algorithm once more. However, as the
large blocks are a consequence of the structure of the near-
est neighbor subgraph, the algorithm will often return the
block unchanged.

The greedy algorithm presented in this section seems to
perform well in many cases where splitting is desired. The
algorithm’s input is an arbitrary valid threshold blocking,
b, and it returns a blocking where no edge is greater than
in the original blocking and no block contains more than
2k − 1 vertices.

Figure 4 provides pseudocode that describes the algo-
rithm. Informally, it searches among the existing blocks
to find a splittable block, i.e., one that contains 2k or more
vertices. In such blocks, it finds the two vertices farthest
apart and construct two new blocks based on them. Each
of the two vertices picks enough vertices from the original
block to fulfill the size requirement, and remaining ver-
tices are assigned to the vertex which is closest. This is
repeated until no block contains 2k or more vertices.

As a blocking with a single block, b = {{1, · · · , n}} is
a valid threshold blocking, this algorithm can be use to
block the whole sample as well.

H. Simulation study

H.1. Implementation and hardware

The approximation algorithm is implemented in the R and
C++ languages using the CHOLMOD library for operations
on sparse matrices [39] and the ANN library for nearest
neighbor searching written by David M. Mount and Sunil
Arya. The source code is publicly available at an online
code repository and can otherwise be obtained on request.

The simulations where run on the SAVIO computa-
tional cluster at UC Berkeley using Intel Xeon E5-2670
processors for which each core is clocked at 2.5 GHz.
Each round of the simulations was allocated a single core,
largely reflecting the performance of an ordinary desktop
computer, and was limited to a maximum of 48 GB ran-
dom access memory.

H.2. Estimation methods

After each algorithm has derived their blockings, treat-
ment was assigned independently across blocks using
block-balanced complete randomization [37]. For a block
Vx with an experiment with t treatment conditions,
b|Vx|/tc units are randomly assigned to each of the treat-
ments. Then |Vx| (mod t) treatment conditions are
picked at random and randomly assigned to the units still
without treatments. When t divides all blocks, e.g., when
using fixed-sized blockings, this randomization scheme is
equivalent to ordinary complete randomization within the
blocks.

For methods that use blocking, the block-size weighted
difference-in-means estimator was used [37]. This estima-
tor first estimates the treatment effect separately within

15

A A’

B B’

C C’

D D’

Figure 3: An illustration of the directed version of the blocking algorithm with a comparison with the undirected
version. (A) The directed algorithm creates a nearest neighbor digraph by drawing an arc from each vertex to its
closest neighbor. (A’) The undirected algorithm draws the same graph but disregard the directionality of the edges.
(B) The directed version finds seeds (red vertices) so that no two seeds points towards the same vertex. (B’) As the
undirected version disregard the direction of the edges, it forces all seeds to be at least on distance of three edges and
thereby misses one possible seed. (C) Blocks are formed with the seeds’ closest neighbors. (C’) Blocks are formed both
with the seeds’ closest neighbors and vertices that have the seeds as their closest neighbors. (D,D’) Remaining vertices
are assigned to the block containing their closest neighbor.

16

G: weighted graph describing a sample
p: arbitrary valid blocking of G

ThresholdGreedy(p, G):
while Vx ∈ p : |Vx| ≥ 2k:

p← p \ Vx

i, j ← argmaxi,j∈Vx
cij

Vy ← NNVx\{j}[i]
Vz ← NNVx\Vy

[j]

foreach ` ∈ Vx \ (Vy ∪ Vz):
if c`i ≤ c`j :

Vy ← Vy ∪ `
else:

Vz ← Vz ∪ `
p← p ∪ Vy ∪ Vz

return p

Figure 4: Greedy threshold blocking algorithm. NNV ′ [i]
denotes the union of i and i’s k − 1 nearest neighbors in
the graph induced on G by vertices V ′.

each block, and derives an estimate for the sample by tak-
ing a weighted average based on the sizes of the blocks.
When a fixed-sized blocking method is used, this esti-
mator is equivalent to the ordinary difference-in-means
estimator.

Let T and C collect all units in the two treatment
conditions for which the contrast is of interest. Let β̂Vx

be the estimated treatment effect within block Vx using
the ordinary difference-in-means estimator:

β̂Vx =
∑

i∈Vx∩T

yi
|Vx ∩T| −

∑
i∈Vx∩C

yi
|Vx ∩C| . (23)

The estimated treatment effect for the complete sample,
β̂, is then given by averaging over all blocks, weighted by
their size:

β̂ =
∑
Vx∈b

|Vx|
n
β̂Vx . (24)

The ordinary least squares estimator investigated in
addition to the blocking methods adjusts for imbalances
in the covariates linearly. That is, the estimator of the
contrast between treatments T and C (presuming exactly

two treatment conditions) is given by the β̂ that solves
the following optimization problem:

arg min
{α̂,β̂,γ̂1,γ̂2}

n∑
i=1

(
yi − α̂− β̂ 1[i ∈ T]− γ̂1xi1 − γ̂2xi2

)2
.

(25)

17

Table 3: Run time and memory use for blocking algorithms by sample size: two-dimensional input data

Algorithm 102 103 104 2×104 5×104 105 106 107 108

Panel A: Run time in seconds

Approximation algorithm 0.2 0.2 0.2 0.2 0.3 0.5 4.0 47.8 657.4

Directed version 0.2 0.2 0.2 0.2 0.3 0.5 3.8 45.2 618.7

Improvements 1-3 0.2 0.2 0.2 0.2 0.4 0.6 5.7 68.1 935.0

Improvements 1-4 0.2 0.2 0.2 0.2 0.4 0.7 6.5 78.4 1,109.0

Fixed greedy 0.2 4.4 1,078.9 7,119.8

Threshold greedy 0.2 1.1 284.3 1,276.1

Non-bipartite matching 2.2 4.3 377.1 2,840.1

Panel B: Memory use in megabytes

Approximation algorithm 29 30 31 30 33 34 174 1,467 14,514

Directed version 29 30 31 30 32 34 174 1,467 14,514

Improvements 1-3 30 30 31 32 36 42 229 2,152 21,343

Improvements 1-4 30 30 31 32 36 43 236 2,230 22,122

Fixed greedy 30 58 2,891 11,490

Threshold greedy 30 136 10,711 42,745

Non-bipartite matching 52 135 7,705 30,666

Note: Blank cells indicate that the corresponding algorithm uses more than 48 GB of memory or does not successfully terminate within
three hours (effective time) for the corresponding sample size.

Table 4: Run time and memory use for blocking algorithms by sample size: five-dimensional input data

Algorithm 102 103 104 2×104 5×104 105 106 107 108

Panel A: Run time in seconds

Approximation algorithm 0.2 0.2 0.2 0.3 0.8 1.6 19.7 222.4 2,794.0

Directed version 0.2 0.2 0.2 0.3 0.8 1.6 19.4 220.4 2,764.3

Improvements 1-3 0.2 0.2 0.3 0.4 0.8 1.8 21.7 244.6 3,127.9

Improvements 1-4 0.2 0.2 0.3 0.4 0.9 2.0 25.4 289.9 3,741.5

Fixed greedy 0.2 4.6 1,043.6 7,121.5

Threshold greedy 0.2 1.1 306.6 1,351.3

Non-bipartite matching 2.2 4.6 665.5 5,085.7

Panel B: Memory use in megabytes

Approximation algorithm 30 30 30 32 34 43 247 2,269 22,525

Directed version 30 30 30 32 34 41 247 2,269 22,525

Improvements 1-3 30 30 31 33 37 52 316 2,993 29,742

Improvements 1-4 30 30 31 32 37 52 325 3,077 30,577

Fixed greedy 30 58 2,892 11,492

Threshold greedy 30 136 10,702 42,748

Non-bipartite matching 52 126 7,628 33,399

Note: Blank cells indicate that the corresponding algorithm uses more than 48 GB of memory or does not successfully terminate within
three hours (effective time) for the corresponding sample size.

18

Table 5: Run time and memory use for blocking algorithms by sample size: ten-dimensional input data

Algorithm 102 103 104 2×104 5×104 105 106 107 108

Panel A: Run time in seconds

Approximation algorithm 0.2 0.2 0.7 1.8 7.7 22.3 386.3 4,970.6

Directed version 0.2 0.2 0.7 1.8 7.8 22.1 394.6 5,129.0

Improvements 1-3 0.2 0.2 0.8 1.8 7.8 22.4 380.5 5,006.5

Improvements 1-4 0.2 0.2 0.8 2.0 8.7 25.4 452.2 6,013.7

Fixed greedy 0.2 4.4 1,064.7 7,102.8

Threshold greedy 0.2 1.1 283.7 1,355.8

Non-bipartite matching 2.2 5.0 776.2 6,026.1

Panel B: Memory use in megabytes

Approximation algorithm 30 30 32 34 39 54 361 3,451

Directed version 30 30 32 34 39 52 361 3,451

Improvements 1-3 30 30 32 35 44 61 437 4,236

Improvements 1-4 30 30 33 35 44 65 447 4,323

Fixed greedy 30 58 2,894 11,495

Threshold greedy 30 136 10,704 42,750

Non-bipartite matching 52 133 7,582 30,156

Note: Blank cells indicate that the corresponding algorithm uses more than 48 GB of memory or does not successfully terminate within
three hours (effective time) for the corresponding sample size. No algorithm terminates within three hours with 100 million ten-dimensional
data points. In test-runs, the original version of the approximation algorithm terminates within 24 hours using approximately 34 GB of
memory in that setting.

Table 6: Performance of blocking algorithms when k = 4 by sample size: maximum and average within-block distances
relative to the approximation algorithm and average block size

Max. within-block distance Avg. within-block distance Avg. block size

Algorithm 102 103 104 102 103 104 102 103 104

Approximation algorithm 1.000 1.000 1.000 1.000 1.000 1.000 6.11 6.10 6.10

Directed version 0.923 0.919 0.916 0.916 0.912 0.911 5.63 5.60 5.59

Improvements 1-3 0.816 0.827 0.839 0.803 0.798 0.797 4.96 4.95 4.95

Improvements 1-4 0.780 0.759 0.739 0.804 0.799 0.798 4.87 4.87 4.87

Fixed greedy 2.263 6.056 16.858 0.899 0.904 0.894 4.00 4.00 4.00

Threshold greedy 0.958 1.008 1.041 0.979 1.005 1.015 5.03 5.01 5.01

19

Table 7: Root mean square error relative to the approx-
imation algorithm when k = 4 by sample size

Method 102 103 104

Approximation algorithm 1.000 1.000 1.000

Directed version 0.941 0.961 0.978

Improvements 1-3 0.854 0.891 0.966

Improvements 1-4 0.846 0.892 0.957

Fixed greedy 1.226 1.421 1.203

Threshold greedy 1.031 1.057 1.010

Unadjusted 3.586 10.719 19.079

OLS adjustment 1.384 4.085 7.290

Table 8: Root mean square error when k = 2 by sample
size, without normalization

Method 102 103 104

Approximation algorithm 0.7182 0.0921 0.0214

Directed version 0.6992 0.0909 0.0213

Improvements 1-3 0.6685 0.0884 0.0212

Fixed greedy 1.1557 0.1471 0.0246

Threshold greedy 0.8672 0.1055 0.0222

Non-bipartite matching 0.6837 0.0874 0.0210

Unadjusted 4.3754 1.3954 0.4424

OLS adjustment 1.6891 0.5317 0.1688

Table 9: Root mean square error when k = 4 by sample
size, without normalization

Method 102 103 104

Approximation algorithm 1.2196 0.1302 0.0232

Directed version 1.1470 0.1252 0.0227

Improvements 1-3 1.0420 0.1160 0.0224

Improvements 1-4 1.0320 0.1162 0.0222

Fixed greedy 1.4946 0.1851 0.0279

Threshold greedy 1.2579 0.1377 0.0234

Unadjusted 4.3732 1.3961 0.4425

OLS adjustment 1.6878 0.5320 0.1691

20

