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Abstract

There is an active debate in the literature on censored data about the relative performance of
model based maximum likelihood estimators, IPCW-estimators, and a variety of double robust
semiparametric efficient estimators. Kang and Schafer (2007) demonstrate the fragility of double
robust and IPCW-estimators in a simulation study with positivity violations. They focus on a
simple missing data problem with covariates where one desires to estimate the mean of an
outcome that is subject to missingness. Responses by Robins, et al. (2007), Tsiatis and Davidian
(2007), Tan (2007) and Ridgeway and McCaffrey (2007) further explore the challenges faced by
double robust estimators and offer suggestions for improving their stability. In this article, we join
the debate by presenting targeted maximum likelihood estimators (TMLEs). We demonstrate that
TMLEs that guarantee that the parametric submodel employed by the TMLE procedure respects
the global bounds on the continuous outcomes, are especially suitable for dealing with positivity
violations because in addition to being double robust and semiparametric efficient, they are
substitution estimators. We demonstrate the practical performance of TMLEs relative to other
estimators in the simulations designed by Kang and Schafer (2007) and in modified simulations
with even greater estimation challenges.
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1 Introduction

The translation of a scientific question into a statistical estimation problem
often involves the formulation of a full-data structure, a target parameter of
the full-data probability distribution representing the scientific question of
interest, and an observed data structure which can be viewed as a mapping
on the full data structure and a censoring variable. One must identify the
target parameter of the full-data distribution from the probability distribu-
tion of the observed data structure, which often requires particular modeling
assumptions such as the coarsening at random assumption on the censoring
mechanism (i.e., the conditional distribution of censoring, given the full-data
structure). The statistical problem is then reduced to a pure estimation prob-
lem defined by the challenge of constructing an estimator of the estimand,
defined by the identifiability result for the target parameter of the full-data
distribution. The estimator should respect the statistical model implied by
the posed assumptions on the censoring mechanism and the full-data distri-
bution.

For semiparametric (e.g., nonparametric) statistical models, many es-
timators rely in one way or another on the inverse probability of censoring
weights (IPCW). Such estimators can be biased and highly variable under
practical or theoretical violations of the positivity assumption, which is a
support condition on the censoring mechanism that is necessary to establish
the identifiability of the target parameter (e.g., Robins (1986, 1987, 1999);
Neugebauer and van der Laan (2005); Petersen et al. (2010)). A particu-
lar class of estimators are so called double robust estimators (e.g., van der
Laan and Robins (2003)). Double robust (DR) estimators, which rely on
both IPCW and a model of the full-data distribution, are not necessarily
protected from the bias or inflated variance that can result from positivity
violations, and in recent literature, there is much debate on the relative per-
formance of DR estimators when the positivity assumption is violated. In
particular, Kang and Schafer (2007) (KS) demonstrate the fragility of DR
estimators in a simulation study with near, or practical, positivity violations.
They focus on a simple missing data problem in which one wishes to estimate
the mean of an outcome that is subject to missingness and all possible co-
variates for predicting missingness are measured. Responses by Robins et al.
(2007), Tsiatis and Davidian (2007), Tan (2007) and Ridgeway and McCaf-
frey (2007) further explore the challenges faced by DR estimators and offer
suggestions for improving their stability.
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Under regularity conditions, DR estimators are asymptotically unbi-
ased if either the model of the conditional expectation of the outcome given
the covariates or the model of the conditional probability of missingness
given the covariates is consistent. DR estimators are semiparametric effi-
cient (for the nonparametric model for the full-data distribution) if both of
these estimators are consistent. In their article, KS introduce a variety of
DR estimators and compare them to non-DR IPCW estimators as well as a
simple parametric model based ordinary least squares (OLS) estimator. As
the KS simulation has practical positivity violations, some values of both the
true and estimated missingness mechanism are very close to zero. In this
situation, the IPCW will be extremely large for some observations of the
sample. Therefore, DR and non-DR estimators that rely on IPCW may be
unreliable. As a result, KS warn against the routine use of estimators that
rely on IPCW, including DR estimators. This is in agreement with other
literature analyzing the issue. For an overview of the issue, for example,
see Robins (1986,1987, 1999); Robins and Wang (2000); van der Laan and
Robins (2003)). For literature showing simulations demonstrating the ex-
treme sparsity bias of IPCW-estimators, see for example, Neugebauer and
van der Laan (2005)). Also, Petersen et al. (2010); Wang et al. (2006a);
Moore et al. (2009); Cole and Hernan (2008); Kish (1992); Bembom and
van der Laan (2008)) have focused on diagnosing violations of the positivity
assumptions in response to this concern. Bembom and van der Laan (2008)
presented data adaptive selection of the truncation constant to control the
influence of weighting. In addition, van der Laan and Petersen (2007) and
Petersen et al. (2010) discussed selecting parameters that are relying on
realistic assumptions.

The particular simulation in KS also gives rise to a situation in which
under dual misspecification, the OLS estimator outperforms all of the pre-
sented DR estimators. While this is an interesting issue, it is not the main
focus of this article. In our view, dual misspecification brings up the need for
other strategies for improving the robustness of estimators in general, such
as incorporating data adaptive estimation instead of relying on parametric
regression models for the missingness mechanism and the conditional distri-
bution of responses, an idea echoed in the responses by Tsiatis and Davidian
(2007) and Ridgeway and McCaffrey (2007), and standardly incorporated in
the UC Berkeley literature on targeted maximum likelihood estimation (e.g.,
van der Laan and Rubin (2006); van der Laan et al. (2009)). In particular,
we note that a statistical estimation problem is also defined by the statistical
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model, which, in this case, is defined by a nonparametric model: such models
require data adaptive estimators in order to claim that the estimator is con-
sistent. Nonetheless, we explicitly demonstrate the impact of the utilization
of machine learning on the simulation results in a final section of this article.

In their response to the KS paper, Robins et al. (2007) point out that
a desirable property of DR estimators is “boundedness,” in that for a finite
sample, estimators of the mean response fall in the parameter space with
probability 1. Estimators that impose such a restriction can introduce new
bias but avoid the challenges of highly variable weights. Robins et al. (2007)
discuss ways in which to guarantee that “boundedness” holds and present
two classes of bounded estimators–regression DR estimators and bounded
Horvitz-Thompson DR estimators. We define examples of these estimators
below, and we evaluate their relative performance. The response by Tsiatis
and Davidian (2007) offers strategies for constructing estimators that are
more robust under the circumstances in the KS simulations. In particular,
to address positivity violations, they suggest an estimator that uses IPCW
only for observations with missingness mechanism values that are not close to
zero, while using regression predictions for the observations with very small
missingness mechanism values. One might consider either a hard cutoff for
dividing observations or weighting each part of the influence curve by the
estimated missingness mechanism. Tan (2007) also points to an improved
locally efficient double robust estimator (Tan (2006)) that is able to maintain
double robustness as well as provides guaranteed improvement relative to an
initial estimator, improving on such type of estimators that had an algebraic
similar form but failed to guarantee both properties (Robins et al. (1994),
and see also van der Laan and Robins (2003)). Many responders also make
valuable suggestions regarding the dual misspecification challenge.

In the current paper, adapted in part from Sekhon et al. (2011), we
add targeted maximum likelihood estimators (TMLEs), or more generally,
targeted minimum loss based estimators (van der Laan and Rubin (2006))
to the debate on the relative performance of DR estimators under practi-
cal violations of the positivity assumption in the particular simple missing
data problem set forth by KS. TMLEs involve a two-step procedure in which
one first estimates the conditional expectation of the outcome, given the co-
variates, and then updates this initial estimator, targeting the parameter of
interest, rather than the overall conditional mean of the outcome given the
covariates. The second step requires specification of a loss-function (e.g.,
log-likelihood loss function) and a parametric submodel through the initial
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regression, so that one can fit the parametric sub-model by minimizing the
empirical risk (e.g., maximizing the log-likelihood). The estimator of the
target parameter is then defined as the corresponding substitution estima-
tor. Because TMLEs are substitution estimators, they not only respect the
global bounds of the parameter and data (and thus satisfy the “bounded-
ness” property defined by Robins et al. (2007)), but, even more importantly,
they respect the fact that the true parameter value is a particular function
of the data generating probability distribution.

TMLEs are double robust and asymptotically efficient. Moreover,
TMLEs can incorporate data-adaptive likelihood or loss based estimation
procedures to estimate both the conditional expectation of the outcome and
the missingness mechanism.The TMLE also allows the incorporation of tar-
geted estimation of the censoring/treatment mechanism, as embodied by
the collaborative TMLE (C-TMLE), thereby fully confronting a long stand-
ing problem of how to select covariates in the propensity score/missingness
mechanism of DR-estimators. In this article, we compare the performance of
TMLEs to other DR estimators in the literature using the exact simulation
study presented in the KS paper. We also make slight modifications to the
KS simulation, in order to make the estimation even more challenging.

The remainder of this article is organized as follows. Section 2 presents
notation, which deviates from that presented in KS, for the data structure
and parameter of interest. Section 3 formally defines the positivity assump-
tion and gives an overview of causes, diagnostics and responses to violations.
Section 4 defines the estimators on which we focus in this paper, including
a sample of estimators in the literature and TMLEs. Section 5 compares es-
timator performance in the original and modified KS simulations. Section 6
then looks at coupling TMLEs with machine learning. Section 7 concludes
with a discussion of the findings.

2 Data Structure, Statistical Model, and
Parameter of Interest

Consider an observed data set consisting of n independent and identically
distributed (i.i.d) observations of O = (W,∆,∆Y ) ∼ P0. W is a vector
of covariates, and ∆ = 1 indicates whether Y , a continuous outcome, is
observed. P0 denotes the true distribution of O, from which all observations
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are sampled. We view O as a missing data structure on a hypothetical full
data structure X = (W,Y ), which contains the true, or potential, value of
Y for all observations, as if no values are missing. We assume Y is missing
at random (MAR) such that P0(∆ = 1 | X) = g0(1 | W ). In other words,
we assume there are no unobserved confounders of the relationship between
missingness ∆ and the outcome Y .

We define Q0 = {Q0,W , Q̄0}, where Q0,W (w) ≡ P0(W = w) and
Q̄0(W ) ≡ E0(Y | ∆ = 1,W ). We make no assumptions about Q0. The
generalized Cramer-Rao information bound for any parameter of Q0 does
not depend on the statistical model for the missingness mechanism g0. The
parameter of interest is the mean outcome E0(Y ) for the sampled population,
as if there were not missing observations of Y . Due to the MAR assump-
tion and the positivity assumption defined below, our target parameter is
identified from P0 by the following mapping from Q0:

µ(P0) = E0(Y ) = E0(Q̄0(W )).

3 The Positivity Assumption

The identifiability of the parameter of interest µ(P0) requires MAR and ad-
equate support in the data. Regarding the latter, it requires that within
each stratum of W , there is positive probability that Y is not missing. This
requirement is often referred to as the positivity assumption. Formally, for
our target parameter, the positivity assumption requires that:

g0(∆ = 1 | W ) > 0 P0-almost everywhere. (1)

The positivity assumption is specific to the the target parameter. For
example, the positivity assumption of the target parameter E0{E0(Y | A =
1,W )−E0(Y | A = 0,W )} of the probability distribution of O = (W,A, Y ),
representing the additive causal effect under causal assumptions, requires
that within each stratum there is a positive probability for all possible treat-
ment assignments. For example, if A is a binary treatment, then positivity
requires that 0 < g0(A = 1 | W ) < 1. (The assumption is often referred to
as the experimental treatment assignment (ETA) assumption for causal pa-
rameters.) In addition to being parameter-specific, the positivity assumption
is also model-specific. Parametric model assumptions, which extrapolate to
regions of the joint distribution of (A,W) that may not be supported in the

5

Porter et al.: Relative Performance of Targeted Maximum Likelihood Estimators



data, allow for weakening the positivity assumption (Petersen et al. (2010)).
However, analysts need to be sure that their parametric assumptions actually
hold true, which may be difficult if not impossible.

Violations and near violations of the positivity assumption can arise
for two reasons. First, it may be theoretically impossible or highly unlikely for
the outcome Y to be observed for certain covariate values in the population
of interest. The threat to identifiability due to such structural violations of
positivity exists regardless of the sample size. Second, given a finite sample,
the probability of the outcome being observed for some covariate values might
be so small that the observed sample cannot be distinguished from a sample
drawn under a theoretical violation of the positivity assumption. The effect of
such practical violations of the positivity assumption are sample size specific,
and the resulting sparse data bias and inflated variance are often as dramatic
as under structural violations.

Several approaches for diagnosing bias due to positivity violations
have been suggested (see Petersen et al. (2010) for an overview). Analysts
may assess the distribution of ∆ within covariate strata (or in the case
of causal parameters, the distribution of treatment assignment), but this
method is not practical with high dimensional covariate sets or with con-
tinuous or multi-level covariates, and also provides no quantitative measure
of the resulting sparse-data bias. Analysts may also assess the distribution
of the estimated missingness mechanism scores, gn(∆ = 1 | W ), or inverse
probability weights. While this approach may indicate positivity violations,
it does not provide any information on the extent of potential bias of the
chosen estimator. Wang et al. (2006b) introduce and Petersen et al. (2010)
further discuss a diagnostic that provides an estimate of positivity bias for
any candidate estimator, which is based on a parametric bootstrap. Bias
estimates of similar or larger magnitude than an estimate’s standard error
can raise a red flag to analysts that inference for their target parameter is
threatened by lack of positivity.

When censoring probabilities are close to 0 (or 1 in the case of an
effect parameter), a common practice is to truncate the probabilities or the
resulting inverse probability weights, either at fixed levels or at percentiles
(Petersen et al. (2010); Wang et al. (2006a); Moore et al. (2009); Cole and
Hernan (2008); Kish (1992); Bembom and van der Laan (2008)). The practice
limits the influence of observations with large unbounded weights, which may
reduce positivity bias and rein in inflated variance. However, this practice
may also introduce bias, due to misspecification of the missingness mecha-
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nism gn. The extent to which truncating gn hurts or helps the performance
of an estimator depends on the level of truncation, the estimator and the
distribution of the data. In our simulations below, we examine the effect of
truncating missingness probabilities for all estimators that we introduce in
the next section.

4 Estimators of a Mean Outcome when the
Outcome is Subject to Missingness

4.1 Estimators in the Literature

As a benchmark, KS compare all estimators in their paper to the ordinary
least squares (OLS) estimator. For the target parameter, the OLS estimator
is equivalent to the G-computation estimator based on a linear regression
model. It is defined as:

µn,OLS =
1

n

n∑

i=1

Q̄0
n(Wi).

where Q̄0
n = mβn is a linear regression initial fit of Q̄0, and βn is given by:

βn = argmin
β

n∑

i=1

∆i(Yi −mβ(Wi))
2.

(Note that in our notation, the subscript n refers to an estimation, and
the superscript indicates whether the estimation is from an initial fit (0n), or
as we introduce below, a refit (′n) or a fluctuated fit (∗n).) Under violation
of the positivity assumption, the OLS estimator, when defined, extrapolates
from strata of W in which there is support to strata of W that lack adequate
support. The extrapolation depends on the validity of the linear regression
model, and misspecification leads to bias.

KS present comparisons of several DR (and non-DR) estimators. We
focus on just a couple of them here. Using our terminology with the ter-
minology and abbreviations from KS in parenthesis the estimators we com-
pare are: the weighted least squares (WLS) estimator (regression estimation
with inverse-propensity weighted coefficients, µn,WLS) and the augmented
IPCW (A-IPCW) estimator (regression estimation with residual bias correc-
tion, µn,BC−OLS). Both of these DR estimators are defined below.
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The WLS estimator is defined as:

µn,WLS =
1

n

n∑

i=1

mβn(Wi),

where

βn = argmin
β

n∑

i=1

∆i

gn(1 | Wi)
(Yi −mβ(Wi))

2.

The A-IPCW estimator, introduced by J.M. Robins and Zhao (1994),
is then defined as:

µn,A−IPCW = Q̄0
n(Wi) +

1

n

n∑

o=1

∆i

gn(1 | Wi)
(Yi − Q̄0

n(Wi)).

Both of these estimators rely on estimators of Q̄0 and g0. They are
consistent if Q̄0

n or gn is consistent, and efficient if both are consistent. Under
positivity violations, however, these estimators rely on the consistency of
Q̄0

n, and require that gn converges to a limit that satisfies the positivity
assumption (see e.g., van der Laan and Robins (2003)).

Additionally, in comments on KS, Robins et al. (2007) introduce
bounded Horvitz-Thompson (BHT) estimators, which, as the name suggests,
are bounded, in that for finite sample sizes the estimates are guaranteed to
fall in the parameter space. A BHT estimator is defined as:

µn,BHT = Q̄0
n(W ) +

1

n

∑

i

∆i

gnEXT (1 | Wi)
(Yi − Q̄0

n(Wi)).

This is equivalent to the A-IPTW estimator, but estimating g0(1 | W )
by fitting the following logistic regression model:

logitPEXT (∆ = 1 | W ) = αTW + φhn(W ),

and hn(W ) = Q̄0
n(W )− 1

n

∑n
i=1 Q̄

0
n(Wi).

We also include another important class of doubly robust, locally ef-
ficient, regression-based estimators introduced by Scharfstein et al. (1999),
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further discussed in Robins (1999) and compared to the TMLE in Rosenblum
and van der Laan (2010). This estimator is based on a parametric regression
model, which includes a “clever covariate” that incorporates inverse proba-
bility weights. The estimator behaves similarly to the TMLE using a linear
fluctuation (and is identical if the TMLE using a linear fluctuation uses this
clever parametric regression as initial estimator). We use the abbreviation
PRC. The estimator is defined as:

µn,PRC =
1

n

n∑

i=1

Q̄′
n(Wi),

whereQ′
n(W ) = mβn,εn(W ) andmβ,ε(W ) is a parametric model, which

includes the clever covariate H∗
gn(W ) = 1

gn(1|W ) , and (βn, εn) is the OLS.

Cao et al. (2009) presents a DR estimator that achieves minimum
variance among a class of DR estimators indexed by all possible linear regres-
sions for the initial estimator, when the estimator of missingness mechanism
is correctly specified (see also Rubin and van der Laan (2008) for empiri-
cal efficiency maximization), while it preserves the double robustness. They
also address the effect of large IPCW by enhancing the missingness mecha-
nism estimator in order to constrain the predicted values. Their estimator is
defined as:

µn,Cao =
n∑

i=1

∆iYi

gn(1 | Wi)
− ∆i − gn(1 | Wi)

gn(1 | Wi)
m(Wi, βn).

Cao’s enhanced missingness mechanism estimator is given by:

gn(1 | W ) = πen(W, δn, γn) = 1− exp(δn + W̃γn)

1 + exp(W̃γn)
.

Here W̃ = [1,W ], and the parameters γ and δ are estimated subject to
the constraints 0 < π(W, δ, γ) < 1 and

∑n
i=1∆i/πen(Wi, δn, γn) = n. A

quasi-Newton method implemented in the constrOptim.nl function in the R
package alabama was used to estimate (δn, γn) (Varadhan, 2010). We used
OLS to estimate βn, which corresponds to Cao’s µ̂en

usual.
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Tan (2010) presents an augmented likelihood estimator that is a more
robust version of estimators originally introduced in Tan (2006) that respect
boundedness and is semi-parametric efficient. This estimator is defined as:

µn,Tan =
1

n

n∑

i=1

∆iYi

ω(W ; λ̃step2)
,

where ω(W ; λ̃step2) is an enhanced estimate of the missingness mechanism
based on an initial estimate, πML(W ). Specifically, ω(W ;λ) = πML(W ) +
λThn(W ), where hn = (hT

n,1, h
T
n,2),

hn,1 = (1− πn,ML(W ))νn(W ),

hn,2 =
∂π

∂γn,ML
(W ; γn,ML),

νn(W ) = [1, Q̄0
n(W )]T ,

and γn,ML is a maximum likelihood estimator for the propensity score model
parameter. An estimate λn that respects the constraint 0 < ω(Wi,λ) if
∆i = 1 can be obtained using a two-step procedure outlined in Tan’s article.
Following Tan’s recommendation, non-linear optimization was carried out
using the R trust package (Geyer, 2009). We consider the two variants of
Tan’s LIK2 augmented likelihood estimator that performed best in Tan’s
simulations under misspecification of Q. Our estimator TanWLS relies on
a weighted least squares estimate of Q̄0

n. TanRV relies on the empirical
efficiency maximization estimator of Rubin and van der Laan (Rubin and
van der Laan, 2008),

Q̄n,RV =
n∑

i=1

∆i

g(1 | Wi)
(Yi −m(W ; βn)) +m(W ; βn),

βn = argmin
β

n∑

i=1

∆i(1− gn(1 | Wi))

gn(1 | Wi)2
(Yi −mβ(Wi))

2.
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4.2 TMLEs

The targeted maximum likelihood procedure was first introduced in van der
Laan and Rubin (2006). For a compilation of current and past work on
targeted maximum likelihood estimation, see van der Laan et al. (2009).

In contrast to the estimating equation-based DR estimators defined
above (WLS, A-IPCW, BHT, Cao, and Tan), the PRC estimator and TM-
LEs are DR substitution estimators. TMLEs are based on an update of an
initial estimator of P0 that fluctuates the fit with a fit of a clever parametric
submodel. Assuming a valid parametric submodel is selected, TMLEs do not
only respect the bounds on the outcome implied by the statistical model or
data, but also respect that the true target parameter value is a specified func-
tion of the data generating distribution. Due to respecting this information,
the TMLE does not only respect the local bounds of the statistical model by
being asymptotically (locally) efficient (as the other DR estimators), but also
respect the global constraints of the statistical model. Being a substitution
estimator is particularly important under sparsity, as implied by violations
of the positivity assumption.

Although our target parameter involves a continuous Y , to introduce
the TMLE for the mean outcome, we begin by defining the TMLE for a
binary Y . In this case, the TMLE is defined as:

µn,TMLE =
1

n

n∑

i=1

Q̄∗
n(Wi), (2)

where we use the logistic regression submodel:

logitQ̄0
n(ε) = logitQ̄0

n + εH
∗
gn ,

the clever covariate is defined as H∗
gn(W ) = 1

gn(1|W ) , and ε, the fluctuation
parameter, is estimated by maximum likelihood in which the loss function is
thus the log-likelihood loss function:

− L(Q̄)(O) = ∆
{
Y log Q̄(W ) + (1− Y ) log(1− Q̄(W ))

}
. (3)

Thus εn is fitted with univariate logistic regression, using the initial regression
estimator Q̄0

n as an off-set:

εn = argmin
ε

n∑

i=1

L(Q̄0
n(ε))(Oi).
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The TMLE of Q̄0 is defined as Q̄∗
n = Q̄n(εn), and µ(Q∗

n) is the corresponding
TMLE of µ0.

For estimators Q̄0
n and gn, one may specify a parametric model or use

machine learning or even super learner, which uses loss-based cross-validation
to select weighted combination of candidate estimators (van der Laan et al.
(2007)).

Next, consider that Y is continuous, but bounded by 0 and 1. In this
case, we can implement the same TMLE as we would for binary Y in (2).
That is, we use the same logistic regression submodel, and the same loss
function (3), and the same standard software for logistic regression to fit ε,
simply ignoring that Y is not binary. The same loss function is still valid
for the conditional mean Q̄0 (Wedderburn (1974); Gruber and van der Laan
(2010a)):

Q̄0 = argmin
Q̄

E0L(Q̄).

Finally, given a continuous Y ∈ [a, b] we can define Y ∗ = (Y −a)/(b−
a) so that Y ∗ ∈ [0, 1]. Then, let µ∗(P0) = E0(E0(Y ∗ | ∆ = 1,W )). This
approach requires setting a range [a, b] for the outcomes Y . If such knowledge
is available, one simply uses the known values. If Y would not be subject to
missingness, then one would use the minimum and maximum of the empirical
sample which represents a very accurate estimator of the range. In these
simulations, Y is subject to informative missingness, so that the minimum
or maximum of the biased sample represents a biased estimate of the range,
resulting in a small unnecessary bias in the TMLE (asymptotically negligible
relative to MSE). We enlarged the range of the complete observations on Y
by setting a to 0.9 times the minimum of the observed values, and b to 1.1
times the maximum of the observed values, which seemed to remove most of
the unnecessary bias. We expect that some improvements can be obtained
by incorporating a valid estimator of the range that takes into account the
informative missingness, but such second order improvements are outside the
scope of this article. We now compute the above TMLE of µ∗(P0), denoted
as TMLEY ∗, and we use the relation µ(P0) = (b− a)µ∗(P0) + a.

We note that the estimator proposed by (Scharfstein et al., 1999) and
discussed in the KS debate is a particular special case of a TMLE (Rosen-
blum and van der Laan (2010)). It defines a clever parametric initial regres-
sion for which the update step of the general TMLE-algorithm introduced
in van der Laan and Rubin (2006) results in a zero-update, and is thus not
needed. Such a TMLE falls in the class of TMLEs defined by an initial regres-
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sion estimator, a squared error loss function and univariate linear regression
sub-model (coding the fluctuations of the initial regression estimator for the
TMLE-update step). Such TMLEs for continuous outcomes (contrary to
the excellent robustness of the TMLE for binary outcome based on the log-
likelihood loss function and logistic regression submodel) suffer from great
sensitivity to violations of the positivity assumptions, as was also observed
in the simulations presented in the Kang and Schafer debate. As explained
in (Gruber and van der Laan (2010a)) the problem with this TMLE defined
by the squared error loss function and univariate linear regression submodel
is that its updates are not subject to any bounds implied by the statistical
model or data: that is, it is not using a parametric sub-model, an important
principle of the general TMLE algorithm. The valid TMLE for continuous
outcomes above, defined by the quasi-binary-log-likelihood loss and a univari-
ate logistic regression parametric submodel, was recently presented (Gruber
and van der Laan (2010a)), and in the latter article it was demonstrated that
the previously observed sensitivity of these two estimators to the positivity
assumption was due to those specific choices.

Finally, a natural extension of all of the above TMLEs is to make
a more sophisticated estimate of g0. Therefore, estimator µn,C−TMLEY ∗ is
defined by (2) as well, but the algorithm for computing Q∗

n differs. For the
C-TMLE, we generate a sequence of nested-logistic regression model fits of
g0, gn,1, . . . , gn,K , and we create a corresponding sequence of candidate TM-
LEs Q∗

k,gn,k
, using gn,k in the targeted MLE step, k = 1, . . . , K, such that

the loss-function (e.g., log-likelihood) specific fit of Q∗
k,gn,k

is increasing in k.
Finally, we use loss-function specific cross-validation to select k. The precise
algorithm is presented in Gruber and van der Laan (2010b) and the software
is available, and posted on http://www.stat.berkeley.edu/~laan. As a
result, the resulting estimator gn used in the TMLE is aimed to only in-
clude covariates that are effective in removing bias with respect to the target
parameter: the theoretical underpinnings in terms of collaborative double
robustness of the efficient influence curve is presented in van der Laan and
Gruber (2009).
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5 Simulation Studies

In this section, we compare the performance of TMLEs to the estimat-
ing equation-based DR estimators (WLS, A-IPTW, BHT, Cao, TanWLS,
TanRV) as well as PRC and OLS, in the context of positivity violations.
The goal of the original simulation designed by KS was to highlight the sta-
bility problems of DR estimators. We explore the relative performance of
the estimators under the original KS simulation and a number of alternative
data generating distributions that involve stronger and different types of vi-
olations of the positivity assumption. These new simulation settings were
designed to provide more diverse and even more challenging test cases for
evaluating robustness and thereby finite sample performance of the different
estimators.

For the four simulations described below, all estimators were used to
estimate µ(P0) from 250 samples of size 1000. We include TMLEY ∗ and C-
TMLEY ∗ estimators based on the quasi-log-likelihood loss function and the
logistic regression submodel. We evaluated the performance of the estimators
by their bias, variance and mean squared error (MSE).

We compared the estimators of µ(P0) using different specifications of
the estimators of Q̄0 and g0. In each of the tables presented below, “Qcgc” in-
dicates that the estimators of both were specified correctly; “Qcgm” indicates
that the estimator of Q̄0 was correctly specified, but the estimator of g0 was
misspecified ; “Qmgc” indicates that the estimator of Q̄0 was misspecified,
but the estimator of g0 was correctly specified; and “Qmgm” indicates that
both estimators were misspecified. For the modified simulations we present
results for the “Qmgc” specification only, in order to focus on the perfor-
mance of each estimator when reliance on gn is essential. Additional results
for the other model specifications are available as supplemental materials.

Also, for all estimators, we compared results with no lower bound on
gn(1 | W ) with truncating gn(1 | W ) at a lower bound set at 0.025. We
note that neither KS nor Robins et al. (2007) included bounding gn(1 | W )
when applying their estimators. Although, not bounding gn(1,W ) has the
advantage that in any given application it is difficult to determine which
bounds to use, the theory teaches us that the DR estimators can only be
consistent if gn is bounded from below, even if in truth g0 is unbounded.
In addition, some of the estimators above incorporate implicit bounding of
gn, so that such estimators would appear to be particularly advantageous,
while the gain in performance might all be due to the implicit bounding of gn
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(which would be good to know). Additional results when gn is bounded from
below at 0.01 and 0.05 demonstrate similar behavior, and are also available
on the web.

5.1 Kang and Schafer Simulation

Kang and Schafer (2007) consider n i.i.d. units of O = (W,∆,∆Y ) ∼ P0,
where W is a vector of 4 baseline covariates, and ∆ is an indicator of whether
the continuous outcome, Y , is observed. Kang and Schafer are interested in
estimating the following parameter:

µ(P0) = E0(Y ) = E0(E0(Y | ∆ = 1,W )).

Let (Z1, . . . , Z4) be independent normally distributed random variables with

mean zero and variance 1. The covariates W we actually observe are gener-
ated as follows:

W1 = exp(Z1/2)

W2 = Z2/(1 + exp(Z1)) + 10

W3 = (Z1Z3/25 + 0.6)3

W4 = (Z2 + Z4 + 20)2.

The outcome Y is generated as:

Y = 210 + 27.4Z1 + 13.7Z2 + 13.7Z3 + 13.7Z4 +N(0, 1).

From this, one can determine that the conditional mean Q̄0(W ) of Y , given
W , which equals the same linear regression in Z1(W ), . . . , Z4(W ), where
Zj(W ), j = 1, . . . , 4, are the unique solutions of the 4 equations above in
terms of W = (W1, . . . ,W4). Thus, if the data analyst would have been
provided the functions Zj(W ), then the true regression function is linear in
these functions, but the data analyst is measuring the terms Wj instead. The
other complication of the data generating distribution is that Y is subject
to missingness, and the true censoring mechanism, denoted by g0(1 | W ) ≡
P0(∆ = 1 | W ), is given by:

g0(1 | W ) = expit(−Z1(W ) + 0.5Z2(W )− 0.25Z3(W )− 0.1Z4(W )).
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With this data generating mechanism, the average response rate is 0.50. Also,
the true population mean is 210, while the mean among respondents is 200.
These values indicate a small selection bias.

In these simulations, a linear main term model in the main terms
(W1, . . . ,W4) for either the outcome-regression or missingness mechanism is
misspecified, while a linear main term model in the main terms
(Z1(W ), . . . , Z4(W )) would be correctly specified. Note that in the KS simu-
lation, there are finite sample violations of the positivity assumption. Specif-
ically, we find g0(∆ = 1 | W ) ∈ [0.01, 0.98] and the estimated missingness
probabilities gn(∆ = 1 | W ) were observed to fall in the range [4×10−6, 0.97].

Figure 1 and Table 1 present the simulation results without any
bounding of gn. Tan’s estimator imposes internal bounds on the estimated
missingness mechanism, however we report performance of TanWLS and
TanRV estimators when given an initial estimate gn that is not bounded
away from 0. All estimators have similar performance when Q̄0

n is correctly
specified. When both models are misspecified Cao’s estimator performs as
well as OLS. OLS, CAO and C-TMLEY ∗ are least biased, and TanRV has
the smallest MSE. The performance of all other estimators degrades under
dual misspecification. Arguably, the most interesting test case for all esti-
mators (given that they are all enforced to use parametric models) is Qmgc.
TanWLS, TanRV, C-TMLEY ∗, WLS have the smallest MSE, and TanRV,
TanWLS are least biased. The performance of both Tan estimators is unaf-
fected by externally bounding gn due to their internal bounding of gn.

Figure 2 and Table 2 compare the results for each estimator when gn
is bounded from below at 0.025. Bounding gn appears to be crucial for PRC
in the case of Qmgm, and improves the performance of Cao’s estimator for
the Qmgc specification, but has little effect on the performance of the other
estimators. However, this result does not generalize to other data generating
distributions, where the selection bias is greater and sparsity is more extreme,
as the next simulation demonstrates.
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Figure 1: Sampling distribution of (µn − µ0) with no bounding of gn, Kang
and Schafer simulation.
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Figure 2: Sampling distribution of (µn−µ0) with gn bounded at 0.025, Kang
and Schafer simulation.
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Table 1: Kang and Schafer simulation results with no bounding of gn.
Qcgc Qcgm Qmgc Qmgm

Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE
OLS −0.09 1.40 1.41 −0.09 1.40 1.41 −0.93 1.97 2.82 −0.93 1.97 2.82
WLS −0.09 1.40 1.41 −0.09 1.41 1.41 0.10 1.84 1.84 −3.04 2.08 11.33
A-IPCW −0.09 1.40 1.41 −0.10 1.45 1.45 0.04 2.52 2.51 −8.81 2.3e+2 3.1e+2
BHT −0.09 1.40 1.41 −0.09 1.41 1.41 0.01 2.34 2.33 −7.08 62.47 1.1e+2
PRC −0.09 1.40 1.40 −0.12 1.44 1.45 0.56 3.61 3.91 −37.24 4.9e+4 5.0e+4
Cao −0.09 1.40 1.41 −0.09 1.40 1.41 −0.69 2.27 2.74 −0.93 1.97 2.82
Tan.WLS −0.09 1.40 1.40 −0.09 1.40 1.41 −0.01 1.55 1.54 −1.93 1.62 5.33
Tan.RV −0.09 1.40 1.40 −0.09 1.40 1.40 0.03 1.44 1.44 −1.67 1.51 4.31
TMLEY ∗ −0.10 1.40 1.41 −0.11 1.40 1.40 −0.09 2.12 2.12 −4.61 3.62 24.84
C-TMLEY ∗ −0.10 1.40 1.41 −0.11 1.40 1.40 0.09 1.77 1.77 −1.49 2.76 4.97

Table 2: Kang and Schafer simulation results, gn bounded at 0.025.
Qcgc Qcgm Qmgc Qmgm

Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE
OLS −0.09 1.40 1.41 −0.09 1.40 1.41 −0.93 1.97 2.82 −0.93 1.97 2.82
WLS −0.09 1.40 1.41 −0.09 1.41 1.41 0.10 1.84 1.84 −2.94 1.97 10.59
A-IPCW −0.09 1.40 1.41 −0.09 1.41 1.41 0.04 2.44 2.43 −4.85 6.10 29.64
BHT −0.09 1.40 1.41 −0.09 1.41 1.41 0.03 2.20 2.19 −4.65 5.35 26.95
PRC −0.09 1.40 1.40 −0.09 1.40 1.41 0.51 3.47 3.72 −2.40 3.08 8.85
Cao −0.09 1.40 1.41 −0.09 1.40 1.41 0.18 2.17 2.20 −0.93 1.97 2.83
Tan.WLS −0.09 1.40 1.40 −0.09 1.40 1.41 −0.01 1.55 1.54 −1.91 1.63 5.25
Tan.RV −0.09 1.40 1.40 −0.09 1.40 1.41 0.03 1.44 1.44 −1.66 1.52 4.26
TMLEY ∗ −0.10 1.40 1.41 −0.10 1.41 1.41 −0.09 2.10 2.10 −4.12 3.10 20.04
C-TMLEY ∗ −0.10 1.40 1.41 −0.10 1.40 1.41 0.11 1.74 1.74 −1.37 2.30 4.16
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5.2 Modification 1 of Kang and Schafer Simulation

In the KS simulation, when Q̄0 or g0 are misspecified the misspecifications
are small, and the selection bias is small. Therefore, we modified the KS
simulation in order to increase the degree of misspecification and selection
bias. This creates a greater challenge for estimators, and better highlights
their relative performance.

As before, let Zj be i.i.d. N(0, 1). The outcome Y is generated as
Y = 210 + 50Z1 + 25Z2 + 25Z3 + 25Z4 + N(0, 1). The covariates actually
observed by the data analyst are now given by the following functions of
(Z1, . . . , Z4):

W1 = exp(Z2
1/2)

W2 = 0.5Z2/(1 + exp(Z2
1)) + 3

W3 = (Z2
1Z3/25 + 0.6)3 + 2

W4 = (Z2 + 0.6Z4)
2 + 2.

From this one can determine the true regression function Q̄0(W ) = E0(E(Y |
Z) | W ). The missingness indicator is generated as follows:

g0(1 | W ) = expit(−2Z1 + Z2 − 0.5Z3 − 0.2Z4).

A misspecified fit is now obtained by fitting a linear or logistic main term
regression in W1, . . . ,W4, while a correct fit is obtained by providing the user
with the terms Z1, . . . , Z4, and fitting a linear or logistic main term regression
in Z1, . . . , Z4. With these modifications, the population mean is again 210,
but the mean among respondents is 184.4. With these modifications, we have
a higher degree of practical violation of the positivity assumption: g0(∆ =
1 | W ) ∈ [1.1× 10−5, 0.99] while the estimated probabilities, gn(∆ = 1 | W ),
were observed to fall in the range [2.2× 10−16, 0.87].

Figure 3 and Table 3 presents results for misspecified Q̄0
n without

bounding gn and with gn bounded at 0.025. Bounding dramatically reduces
the variance of all estimators, except OLS, Tan.WLS and Tan.RV, but recall
that Tan estimators always internally bound gn away from 0. This improved
efficiency comes at the cost of a slight increase in bias for all estimators except
PRC.The variance and MSE of C-TMLEY ∗ is less than half of the other non-
TMLE estimators. In contrast to the results on the previous simulation, Cao,
Tan.WLS, and Tan.RV exhibit a lack of robustness at this level of sparsity
when forced to rely on gn at misspecified Q̄0

n.
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Table 3: Modification 1 of Kang and Schafer simulation, Q misspecified.

Qmgc Qmgm
lb on gn Bias Var MSE Bias Var MSE

OLS 0 −35.56 16.58 1.3e+3 −35.56 16.58 1.3e+3
0.025 −35.56 16.58 1.3e+3 −35.56 16.58 1.3e+3

WLS 0 −4.40 41.95 61.15 −34.67 15.95 1.2e+3
0.025 −5.52 31.62 61.93 −34.67 15.95 1.2e+3

A-IPCW 0 −1.83 1.9e+2 2.0e+2 −34.75 17.19 1.2e+3
0.025 −5.88 42.63 77.09 −34.75 17.19 1.2e+3

BHT 0 −3.04 64.63 73.59 −34.75 17.17 1.2e+3
0.025 −5.03 32.89 58.02 −34.75 17.17 1.2e+3

PRC 0 80.64 8.7e+3 1.5e+4 1.25e+11 1.74e+25 1.75e+25
0.025 9.27 2.2e+2 3.0e+2 -34.38 15.28 1.2e+3

Cao 0 −6.17 44.68 82.52 −35.57 16.58 1.3e+3
0.025 −24.25 21.79 6.1e+2 −35.50 17.87 1.3e+3

Tan.WLS 0 −3.59 24.29 37.07 −33.64 42.37 1.2e+3
0.025 −3.64 22.95 36.09 -33.49 50.00 1.2e+3

Tan.RV 0 5.22 93.77 1.2e+2 −34.69 63.16 1.3e+3
0.025 5.28 94.11 1.2e+2 −34.65 64.21 1.3e+3

TMLEY ∗ 0 −0.04 89.33 88.98 −33.74 6.48 1.1e+3
0.025 1.00 22.05 22.96 −33.74 6.48 1.1e+3

C-TMLEY ∗ 0 −0.64 15.55 15.90 −34.26 6.66 1.2e+3
0.025 −1.50 11.96 14.17 −34.19 6.82 1.2e+3
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Figure 3: Sampling distribution of (µn − µ0) with gn bounded at 0.025,
Modification 1 of Kang and Schafer simulation.

5.3 Modification 2 of Kang and Schafer Simulation

For this simulation, we made one additional change to Modification 1: we
set the coefficient in front of Z4 in the true regression of Y on Z equal to
zero. Therefore, while Z4 is still associated with missingness, it is not asso-
ciated with the outcome, and is thus not a confounder. Given (W1, . . . ,W3),
W4 is not associated with the outcome either, and therefore as misspecified
regression model of Q̄0(W ) we use a main term regression in (W1,W2,W3).

This modification to the KS simulation enables us to take the de-
bate on the relative performance of DR estimators one step further, by ad-
dressing a second key challenge of the estimators: that they often include
non-confounders in the censoring mechanism estimator. Though such an
estimator remains asymptotically unbiased, this unnecessary inclusion can
increase asymptotic variance, and may unnecessarily introduce positivity vi-
olations leading to finite sample bias and inflated variance (Neugebauer and
van der Laan, 2005; Petersen et al., 2010).
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Figure 4 and Table 4 reveal that C-TMLEY ∗ has superior performance
relative to estimating equation-based DR estimators when not all covariates
are associated with Y . As discussed earlier, the C-TMLE algorithm provides
an innovative black-box approach for estimating the censoring mechanism,
preferring covariates that are associated with the outcome and censoring,
without “data-snooping.”
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Figure 4: Sampling distribution of (µn − µ0) with gn bounded at 0.025,
Modification 2 of Kang and Schafer simulation.

5.4 Modification 3 of Kang and Schafer Simulation

In some rare cases, a C-TMLE can be a super efficient estimator because
they use a collaborative estimator gn that takes into account the fit of the
initial estimator Q̄0

n (we refer to Rotnitzky et al. (2010) and van der Laan
and Gruber (2009) for a detailed discussion). As a consequence, it is of
particular interest to investigate the behavior of C-TMLEY ∗ in the previous
simulation but with the coefficient in front of Z4 set equal to C/

√
n, for a

number of values of C, in the data generating mechanism for the outcome,
Y = 210 + 50Z1 + 25Z2 + 25Z3 + C/

√
nZ4 +N(0, 1). We report the results
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Table 4: Modification 2 of Kang and Schafer simulation, Q misspecified.

Qmgc Qmgm
lb on gn Bias Var MSE Bias Var MSE

OLS 0 −34.25 15.24 1.2e+3 −34.25 15.24 1.2e+3
0.025 −34.25 15.24 1.2e+3 −34.25 15.24 1.2e+3

WLS 0 −3.64 39.52 52.61 −33.09 15.18 1.1e+3
0.025 −4.92 28.65 52.75 −33.09 15.18 1.1e+3

A-IPCW 0 −1.11 1.8e+ 2 1.8e+2 −33.14 16.47 1.1e+3
0.025 −5.39 39.01 67.89 −33.14 16.47 1.1e+3

BHT 0 −2.27 72.06 76.91 −33.14 16.43 1.1e+3
0.025 −4.57 29.73 50.49 −33.14 16.43 1.1e+3

PRC 0 77.78 7.7e+3 1.4e+4 5.4e+11 4.5e+25 4.5e+25
0.025 9.11 2.0e+2 2.8e+2 −32.79 14.13 1.1e+3

Cao 0 −5.55 40.60 71.21 −34.25 15.25 1.2e+3
0.025 −23.37 20.54 5.7e+2 −34.16 16.48 1.2e+3

Tan.WLS 0 −2.95 23.74 32.32 −32.02 49.66 1.1e+3
0.025 −3.11 23.32 32.91 −32.02 43.37 1.1e+3

Tan.RV 0 6.87 65.77 1.1e+2 −32.95 89.67 1.2e+3
0.025 6.94 65.02 1.1e+2 −32.87 71.78 1.2e+3

TMLEY ∗ 0 0.15 76.03 75.75 −31.99 5.64 1.0e+3
0.025 1.26 17.77 19.29 −32.00 5.60 1.0e+3

C-TMLEY ∗ 0 −0.88 10.69 11.42 −32.58 5.83 1.1e+3
0.025 −1.37 8.48 10.34 −32.68 8.48 1.1e+3

for C = {10, 20, 50}. Table 5 provides the results at each value of C for all
estimators when Q̄0

n is correctly specified and gn is misspecified, and when Q̄0
n

is misspecified and gn is both correctly and mis-specified. In each case, gn is
bounded at 0.025. We note that C-TMLEY ∗ does not break down, even under
these particularly challenging conditions (nor under other simulated scenarios
presented in Gruber and van der Laan (2010b)). It is an open question how
a C-TMLE performs at different local data generating distributions when it
is superefficient, and further research is warranted.
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Table 5: Modification 3 to Kang and Schafer simulation, C/
√
n perturbation,

gn bounded at 0.025.

C = 10 C = 20 C = 50
Bias Var MSE Bias Var MSE Bias Var MSE

Qcgm
OLS −0.06 3.94 3.92 −0.06 3.94 3.93 −0.06 3.94 3.93
WLS −0.06 3.94 3.93 −0.06 3.94 3.93 −0.06 3.95 3.94
A-IPCW −0.06 3.94 3.93 −0.06 3.94 3.93 −0.06 3.95 3.94
BHT −0.06 3.97 3.96 −0.06 3.97 3.96 −0.06 3.98 3.97
PRC −0.06 3.94 3.93 −0.06 3.94 3.93 −0.06 3.95 3.94
Cao −0.06 3.93 3.92 −0.06 3.93 3.92 −0.06 3.94 3.93
Tan.WLS −0.06 4.03 4.01 −0.06 4.03 4.02 −0.07 4.03 4.02
Tan.RV −0.06 4.03 4.01 −0.06 4.03 4.01 −0.07 4.03 4.02
TMLEY ∗ −0.10 3.92 3.92 −0.11 3.92 3.92 −0.11 3.93 3.93
C-TMLEY ∗ −0.10 3.92 3.92 −0.10 3.92 3.92 −0.11 3.93 3.93

Qmgc
OLS −34.28 15.25 1.2e+3 −34.29 15.25 1.2e+3 −34.34 15.24 1.2e+3
WLS −5.13 28.24 54.44 −5.13 28.25 54.50 −5.15 28.28 54.68
A-IPCW −5.47 38.63 68.38 −5.47 38.64 68.45 −5.49 38.69 68.67
BHT −4.62 29.60 50.85 −4.63 29.61 50.90 −4.64 29.63 51.08
PRC 9.21 2.0e+2 2.8e+2 9.21 2.0e+2 2.8e+2 9.21 2.0e+2 2.8e+2
Cao −23.42 20.47 5.7e+2 −23.43 20.47 5.7e+2 −23.46 20.48 5.7e+2
Tan.WLS −3.25 21.00 31.45 −3.25 20.94 31.42 −3.26 20.78 31.35
Tan.RV 6.94 64.90 112.84 6.93 65.23 1.1e+2 6.88 66.37 1.1e+2
TMLEY ∗ 1.17 18.03 19.34 1.17 18.02 19.32 1.16 18.02 19.29
C-TMLEY ∗ −1.63 8.01 10.64 −1.66 8.49 11.21 −1.68 8.83 11.63

Qmgm
OLS −34.28 15.25 1.2e+3 −34.29 15.25 1.2e+3 −34.34 15.24 1.2e+3
WLS −33.00 14.79 1.1e+3 −33.03 14.79 1.1e+3 −33.09 14.78 1.1e+3
A-IPCW −33.05 16.39 1.1e+3 −33.07 16.38 1.1e+3 −33.13 16.35 1.1e+3
BHT −33.05 16.36 1.1e+3 −33.07 16.35 1.1e+3 −33.13 16.32 1.1e+3
PRC −32.39 14.45 1.1e+3 −32.42 14.44 1.1e+3 −32.49 14.40 1.1e+3
Cao −34.18 16.50 1.2e+3 −34.20 16.49 1.2e+3 −34.25 16.48 1.2e+3
Tan.WLS −32.76 73.05 1.1e+3 −32.72 76.88 1.1e+3 −32.75 76.83 1.1e+3
Tan.RV −33.29 71.11 1.2e+3 −33.13 55.13 1.2e+3 −33.17 62.77 1.2e+3
TMLEY ∗ −32.03 5.57 1.0e+3 −32.05 5.56 1.0e+3 −32.12 5.54 1.0e+3
C-TMLEY ∗ −32.64 5.82 1.1e+3 −32.74 5.94 1.1e+3 −32.75 6.22 1.1e+3
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6 TMLEs with Machine Learning for Dual
Misspecification

The KS simulation with dual misspecification (Qmgm) can illustrate the
benefits of coupling data-adaptive (super) learning with targeted maximum
likelihood estimation. C-TMLEY ∗ constrained to use a main terms regression
model with misspecified covariates (W1,W2,W3,W4) has smaller variance
than µn,OLS, but is more biased. The MSE of the TMLEY ∗ is larger than
the MSE of C-TMLEY ∗, with increased bias and variance. We ask how the
estimation process should be affected if we assume that parametric models are
seldom correctly specified and that main term regression techniques generally
fail in capturing the true relationships between predictors and an outcome.
Our answer is that the estimation process should incorporate data-adaptive
machine learning.

We coupled super learning with TMLEY ∗ and C-TMLEY ∗ to estimate
both Q̄0 and g0. For C-TMLEY ∗, four missingness-mechanism score-based
covariates were created based on different truncation levels of the propensity
score estimate gn(1 | W ): no truncation, and truncation from below at the
0.01, 0.025, and 0.05-percentile. These four scores were supplied along with
the misspecified main terms W1, . . . ,W4 to the targeted forward selection
algorithm in the C-TMLEY ∗ used to build a series of candidate nested lo-
gistic regression estimators of the missingness mechanism and corresponding
candidate TMLEs. The C-TMLEY ∗ algorithm used 5-fold cross-validation to
select the best estimate from the eight candidate TMLEs. This allows the
C-TMLE algorithm to build a logistic regression fit of g0 that selects among
the misspecified main-terms and super-learning fits of the missingness mech-
anism score gn(1 | W ) at different truncation levels.

An important aspect of super learning is to ensure that the library
of prediction algorithms includes a variety of approaches for fitting the true
function Q̄0 and g0. For example, it is sensible to include a main terms
regression algorithm in the super learner library. Should that algorithm hap-
pen to be correct, the super learner will behave as the main terms regression
algorithm. It is also recommended to include algorithms that search over a
space of higher order polynomials, non-linear models, and, for example, cubic
splines. For binary outcome regression, as required for fitting g0, classifica-
tion algorithms such as classification and regression trees (Breiman et al.,
1984), support vector machines (Cortes and Vapnik, 1995)), and k-nearest-
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neighbor algorithms (Friedman (1994)), could be added to the library. The
point of super-learning is that we cannot know in advance which procedure
will be most successful for a given prediction problem. Super learning relies
on the oracle property of V-fold cross-validation to asymptotically select the
optimal convex combination of estimates obtained from these disparate pro-
cedures (van der Laan and Dudoit (2003); van der Laan et al. (2004), van der
Laan et al. (2007)).

Consider the misspecified scenario proposed by KS. The true full-data
distribution and the missingness mechanism are captured by main terms lin-
ear regression of the outcome on Z1, Z2, Z3, Z4. This simple model is virtually
impossible to discover through the usual model selection approaches when
the observed data consists of misspecified covariatesO = (W1,W2,W3,W4,∆,
∆Y ), given

Z1 = 2log(W1),

Z2 = (W2 − 10)(1 + 2W1),

Z3 =
25(W3 − 0.6)

2log(W1)
,

Z4 = 3
√
W4 − 20− (W2 − 10)(1 + 2W1).

This complexity illustrates the importance of including prediction algorithms
that attack the estimation problem from a variety of directions. The super
learner library we employed contained the algorithms listed below. The anal-
ysis was carried out in the R statistical programming environment v2.10.1
(Team, 2010), using algorithms included in the base installation or in the
indicated package.

• glm (base) main terms linear regression.

• step (base) stepwise forward and backward selection using the AIC
criterion (Hastie and Pregibon, 1992).

• ipredbagg (ipred) bagging for classification, regression and survival
trees (Peters and Hothorn, 2009; Breiman, 1996).

• DSA (DSA) Deletion/Selection/Addition algorithm for searching over
a space of polynomial models or order k (k set to 2). (Neugebauer and
Bullard, 2010; Sinisi and van der Laan, 2004)
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• earth (earth) Building a regression model using multivariate adaptive
regression splines (MARS) (Milborrow, 2009; Friedman, 1991, 1993).

• loess (stats) Local polynomial regression fitting (W. S. Cleveland and
Shyu, 1992).

• nnet (nnet) Single-hidden-layer neural network for classification (Ven-
ables and Ripley, 2002; Ripley, 1996).

• svm (e1071) Support vector machine for regression and classification
(Dimitriadou et al., 2010; Chang and Lin, 2001).

• k-nearest-neighbors∗ (class) classification using most common out-
come among identified k nearest nodes (k set to 10) (Venables and
Ripley, 2002; Friedman, 1994)

∗ binary outcomes only, added to library for estimating g

Table 6 reports the results when super learning is incorporated into
TMLEY ∗ and C-TMLEY ∗ estimation procedures, based on 250 samples of
size 1000, with predicted values for gn(1 | W ) truncated from below at 0.025.
Using the data-adaptive estimator approach improved bias and variance of
both estimators. TMLEY ∗ efficiency improved by a factor of 8.5, and C-
TMLEY ∗ efficiency improved by a factor of 1.5. In addition, the MSE for
both data-adaptive estimators is smaller than the MSE of the estimator that
performed the best when both Q and g were misspecified, µn,OLS (MSE =
2.82).

Table 6: Results with and without incorporating super learning into TMLEY ∗
and C-TMLEY ∗, Qmgm, gn truncated at 0.025.

Bias Var MSE

TMLEY ∗ -4.12 3.10 20.0
TMLEY ∗ + SL -0.77 1.51 2.10

C-TMLEY ∗ -1.37 2.30 4.16
C-TMLEY ∗ + SL -1.05 1.54 2.64
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7 Discussion

By mapping continuous outcomes into [0,1] and using a logistic fluctuation,
TMLEY ∗ and C-TMLEY ∗ are more robust to violations of the positivity as-
sumption than the TMLEs using the linear fluctuation function. By being a
substitution estimator, it follows that the impact of a single observation on
TMLEY ∗ is bounded by 1/n while many of the other estimators do not have
such a robustness property. We show that C-TMLEY ∗ has superior perfor-
mance relative to estimating equation-based DR estimators when there are
covariates that are strongly associated with the missingness indicator, while
weakly or not at all associated with the outcome Y . The C-TMLE algorithm
provides an innovative approach for estimating the censoring mechanism,
preferring covariates that are associated with the outcome Y and missing-
ness, ∆. C-TMLEs avoid data snooping concerns because the estimation
procedure is fully specified before the analyst observes any data (or at least,
not any data beyond some ancillary statistics). Even in cases in which all
observed covariates are associated with Y , C-TMLE still performs well.

Related work is also being done with respect to other parameters of
interest. For example, both Cao et al. (2009) and Tan (2006) include discus-
sions on applying their estimators to causal effect parameters. In addition,
Freedman and Berk (2008), focus on a causal effect parameter, and demon-
strate that DR estimators (and the WLS estimator in particular) can increase
variance and bias when IPCW are large.

Overall, comparisons of estimators, beyond theoretical studies of
asymptotics as well as robustness, will need to be based on large scale simula-
tion studies including all available estimators, and cannot be tailored towards
one particular simulation setting. Future research should be concerned with
setting up such a large scale objective comparison based on publicly available
software, and we are looking forward to contributing to such an effort.

The research underlying TMLEs was motivated, in part, by the goal
of increasing the stability of DR estimators, and the KS simulations provide
a demonstration of the merits of TMLEs under violations of the positivity as-
sumption. TMLEs are estimators defined by the choice of loss function, and
parametric submodel, both chosen so that the linear span of the scores at zero
fluctuation with respect to the loss function includes the efficient influence
curve/efficient score. All such TMLEs are double robust, asymptotically effi-
cient under correct specification, and substitution estimators, but the choice
of submodel can affect the finite sample robustness if the submodel does not
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respect any bounds such as the linear regression submodel for the TMLE.In
addition, TMLEs can be combined with super learning and empirical effi-
ciency maximization (Rubin and van der Laan (2008) and van der Laan and
Gruber (2009)) to further enhance their performance in practice. We hope
that by showing that these estimators perform well in simulations and set-
tings created by other researchers for the purposes of showing the weaknesses
of DR estimators, as well as in modified simulations that make estimation
even more challenging, we provide probative evidence in support of TMLEs.
Of course, much can happen in finite samples, and we look forward to further
exploring how these estimators perform in other settings.
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