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1. Introduction

Thistlethwaite and Campbell (1960) proposed to use a “regression-discontinuity analysis” in
settings where exposure to a treatment or intervention is determined by an observable score
and a fixed cutoff. The type of setting they described, now widely known as the regression
discontinuity (RD) design, is one where units receive a score, and a binary treatment is
assigned according to a very specific rule. In the simplest case, all units whose score is above
a known cutoff are assigned to the treatment condition, and all units whose score is below
the cutoff are assigned to the control (i.e., absence of treatment) condition. Thistlethwaite
and Campbell insightfully noted that, under appropriate assumptions, the discontinuity in
the probability of treatment status induced by such an assignment rule could be leveraged
to learn about the effect of the treatment at the cutoff. Their seminal contribution led to
what is now one of the most rigorous non-experimental research designs across the social and
biomedical sciences. See Cook (2008), Imbens and Lemieux (2008) and Lee and Lemieux
(2010) for reviews, and the recent volume edited by Cattaneo and Escanciano (2017) for
recent specific applications and methodological developments.

A common and intuitive interpretation of RD designs is that the discontinuous treat-
ment assignment rule induces variation in treatment status that is “as good as” randomized
near the cutoff, because treated and control units are expected to be approximately compa-
rable in a small neighborhood around the cutoff (Lee, 2008; Lee and Lemieux, 2010). This
local randomization interpretation has been extremely influential, and many consider RD
designs to be almost as credible as experiments. Although the formal analogy between RD
designs and experiments was discussed recently by Lee (2008), the idea that the RD de-
sign behaves like an experiment was originally introduced by Thistlethwaite and Campbell,
who called a hypothetical experiment where the treatment is randomly assigned near the
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cutoff an “experiment for which the regression-discontinuity analysis may be regarded as
a substitute” (Thistlethwaite and Campbell, 1960, p. 310). Building on this analogy, Lee
(2008) formalized the idea in a continuity-based framework; in addition, Cattaneo et al.
(2015) formalized this idea in a Fisherian finite-sample framework. See Cattaneo et al.
(2017) and Sekhon and Titiunik (2017) for recent discussions on the connections between
both frameworks.

The analogy between RD designs and experiments has been useful in communicating the
superior credibility of RD relative to other observational designs, and has focused attention
on the need to perform falsification tests akin to those usually used in true experiments.
All these developments have contributed to the RD design’s rigor and popularity. Despite
these benefits, we believe the analogy between RD designs and experiments is imperfect,
and we offer a more cautious interpretation in which the credibility of RD designs ranks
decidedly below that of actual experiments.

In our view, RD designs are best conceived as non-experimental designs or observational
studies—i.e., studies where the goal is to learn about the causal effects of a treatment,
but the similarity or comparability of subjects receiving different treatments cannot be
ensured by construction. Interpreting RD designs as observational studies implies that their
credibility must necessarily rank below that of experiments. This, however, does not mean
that RD designs are without special merit. Among observational studies, RD designs are
one of the most credible alternatives because important features of the treatment assignment
mechanism are known and empirically testable under reasonable assumptions.

We justify our view by focusing on three main issues. First, we consider the RD treat-
ment assignment rule, and show that it contains considerably less information than the
analogous rule in an experimental assignment. Second, we consider the special role of the
score or running variable, in particular the possibility that the score may affect the outcome
via post-treatment channels and violate an exclusion restriction that holds by construction
in experiments. Finally, we highlight that in order to obtain meaningful conclusions from
testing the “empirical implications” of a valid RD design, further assumptions must be
made about the data generating process. All these issues support our view that RD designs
are observational studies. We do not mean these arguments as a critique of RD designs.
Our point is simply that a compelling observational study faces hurdles that are absent in
experimental designs, and therefore the analysis and interpretation of RD designs should
be done with the same caution as in any other observational study.

2. The RD Treatment Assignment Rule

The fundamental feature of RD designs is that the treatment is assigned based on a known
rule. In the so-called sharp RD design where compliance with treatment is perfect, treat-
ment status is deterministic given the score: all units with score below the cutoff are assigned
to and receive the control condition, and all units with score above the cutoff are assigned
to and receive the treatment condition. Moreover, in the standard RD setup, the cutoff is
known. This can be formalized in the rule Ti = 1{Xi ≥ c}, where i = 1, 2, . . . n indexes the
units in the study, Ti is the treatment status, c is the cutoff, and Xi is the score or running
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variable. Because this rule is at the heart of every RD design,1 any researcher working with
an RD design has rich information about the treatment assignment mechanism.

At first glance, the fact that treatment assignment is based on a known rule might sug-
gest that RD designs are not observational studies. As commonly defined (e.g. Rosenbaum,
2002), a key feature of an observational study is that the treatment assignment mechanism
is not under the control of the researcher (or someone else the researcher has access to),
which implies that it is fundamentally unknown. For example, an observational study of
the effects of smoking on lung cancer may compare smokers and non-smokers and obtain
valid inferences under some assumptions, but the probability of smoking always remains
unknown.

RD designs are different in this regard because, although the actual assignment of treat-
ment is rarely under the direct control of the investigator, the probability of receiving
treatment given the score is known for every unit. In other words, if a unit receives a par-
ticular score value, in a sharp RD design we know with certainty whether the probability of
receiving treatment was one or zero. Although this has many advantages, it is not enough
to lift the status of RD from observational studies to experimental designs. The reason is
that the distribution of the score remains fundamentally unknown: although we know that
Ti = 1 if the score Xi is above the cutoff and Ti = 0 otherwise, we know nothing about how
the value of Xi was determined. Thus, despite the treatment assignment rule being known,
the comparability of treated and subjects is not ensured.

This fundamental lack of knowledge about the distribution of the score makes the RD
design inherently different from experiments. In an experiment, units are randomly assigned
to treatment or control, which implies that the distribution of all predetermined character-
istics and unobserved confounders is identical in the treatment and control groups, ensuring
their comparability. In the language of the potential outcomes framework, random assign-
ment of treatment ensures independence between treatment status and potential outcomes.
In the absence of complications (such as interference across units and compliance issues),
this independence is sufficient to guarantee identification of the (sample) average treatment
effect.

In contrast, in RD designs, the treatment assignment rule Ti = 1{Xi ≥ c} is not
enough to ensure the identification of the treatment effect (at the cutoff). This is a direct
consequence of the fact that the assignment rule determines Ti, but it does not determine
Xi. For example, as shown by Hahn et al. (2001), the main condition to obtain identification
of the average treatment effect at the cutoff in a sharp RD design is the continuity of the
regression functions of the potential outcomes at the cutoff. Letting Y1i and Y0i denote the
potential outcomes under treatment and control for unit i, defining the observed outcome
as Yi = TiY1i + (1−Ti)Y0i, and assuming the observed data {Yi, Xi}ni=1 is a random sample
from a larger population, the continuity condition says that E[Y1i|X = x] and E[Y0i|Xi = x],
seen as functions of x, are continuous in x at c.

Crucially, the continuity of the potential-outcome regression functions at the cutoff is
not implied or guaranteed by the known and deterministic RD treatment assignment rule;
it is an assumption that must be imposed. In other words, the fact that the treatment
is assigned according to the rule Ti = 1{Xi ≥ c} places no restrictions on the proper-

1. In a fuzzy RD design compliance with the assignment is no longer perfect; in this case, the rule Ti =
1{Xi ≥ c} still applies, but Ti now refers to treatment assignment instead of treatment status.

176



ties of functions such as E[Y1i|X = x] and E[Y1i|Xi = x]. In contrast, the unconfounded
random treatment assignment rule in classical experiments guarantees a statistical inde-
pendence assumption (or a known randomization distribution assumption in finite-sample
settings). This fundamental asymmetry between the credibility of identification conditions
in experiments versus RD designs—in the former guaranteed by construction, in the latter
by assumption—is one of the reasons why the RD should be considered an observational
design.

Randomized experiments do need additional assumptions for parameter estimation and
hypothesis testing in many cases. Depending on the parameter or hypothesis of interest
and the statistic used, researchers usually need to impose additional regularity conditions,
in addition to modeling the sampling structure of the data. For example, in the case of the
average treatment effect, these regularity conditions, aside from non-interference, include
moment conditions on the outcomes (and covariates)—see, e.g., Lin (2013). Such conditions
will typically be weaker than the assumptions required for estimation in the continuity-based
RD case, where smoothness conditions are required in addition to the continuity assumption
(Calonico et al., 2014), neither of which is guaranteed by the design. We also note that in
the case of randomized experiments, both parameter estimation standard hypothesis testing
can be skipped in favor of permutation tests of the Fisherian sharp null, which require even
weaker assumptions (Rosenbaum, 2002).

3. The Intermediate Role of the Running Variable

The existence of the running variable—and our fundamental lack of knowledge about its
distribution and determinants—poses another challenge for the analogy between experi-
ments and RD designs, and gives another reason to classify the latter as an observational
design. In a nutshell, the source of this second challenge is that the RD running variable
is often a very important determinant of the potential outcomes—not only because it may
correlate with predetermined characteristics that are related to the outcome, but also be-
cause it can have a “direct” or “post-treatment” effect on the potential outcomes. As we
discuss in detail in Sekhon and Titiunik (2017), the special status of the RD score breaks
the usual connection between the concepts of random assignment, statistical independence,
and constant or “flat” regression functions that are taken for granted in experiments. This
exclusion restriction was first noted by Cattaneo et al. (2015) in a Fisherian framework,
and is relaxed under additional assumptions in Cattaneo et al. (2017).

One intuitive way to motivate the RD-experiment analogy is that a randomized exper-
iment can be understood as particular case of the RD design where the score is a (pseudo)
random number, and the cutoff is chosen to ensure the desired probability of treatment
assignment. For example, one can randomly assign a treatment among a group of subjects
with probability 50% by assigning a uniform random number between 1 and 100 to each
subject, and then assigning the treatment only to those subjects whose assigned number
exceeds 50. This randomized experiment can be easily recast as a sharp RD design where
the uniform random number is the score and the cutoff is 50.

This hypothetical experiment recast as an RD design has two crucial features:
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(i) By virtue of random assignment, the score is statistically independent of all prede-
termined covariates, including all those covariates that affect or are related to the
potential outcomes;

(ii) By virtue of the score being an arbitrary number generated solely for the purpose of
assigning the treatment, there can be no “post-treatment” effect of the score on the
potential outcomes except via the treatment assignment indicator.

The combination of (i) and (ii) implies, for example, that the regression functions E[Y0i|X =
x] and E[Y1i|Xi = x] are constant in the entire support of the score.

The RD design, in practice, does not generally satisfy either of these conditions. In
typical RD treatment assignment rules, the score or running variable is a crucial determinant
of the potential outcomes. For example, a party may win an election when its vote share
exceeds 50%, and we may be interested in the effect of winning on future victories. Or
a municipality may receive federal assistance when its poverty index is below a certain
threshold, and we may be interested in the effect of federal assistance on mortality. In such
cases, the score is fundamentally related to both predetermined characteristics of the units
that may be strongly related to the outcome (e.g., municipalities with high poverty index
may also have high unemployment which can affect mortality via lower health insurance
coverage), and it can also affect the outcome directly (e.g., increased poverty may reduce
access to potable water and increase disease and mortality risk). Both possibilities make
the analogy between experiments and RD designs imperfect.

This challenge can be further illustrated by noting that even if we assume that the score is
randomly assigned among subjects, the score—and, consequently, the treatment assignment,
may fail to be independent of the potential outcomes. The reason is simply that, although
the random assignment of the score ensures condition (i), it fails to ensure condition (ii).
A randomly assigned score is by construction independent of all predetermined covariates,
but it nonetheless may have an effect on the outcome that occurs not via correlation with
predetermined characteristics, but via a post-treatment channel. This implies that the
random assignment of the score is not enough to guarantee the exclusion restriction that
the score affects the potential outcomes only through the treatment assignment indicator.

To understand why this occurs, note that in a true experiment the exclusion restriction
holds by construction because the pseudo-random number assigned to each subject plays
no role in the data generating process of the potential outcomes. Importantly, the exclusion
restriction holds in a true experiment not because of the random assignment per se, but
because the score used to implement the randomization procedure is arbitrary (indeed, in
most real experiments, this “score” is entirely unknown to the experimental subjects). This
is why in a RD design, where the score may often affect the outcome by various post-
treatment channels, the random assignment of the score does not—and cannot—guarantee
condition (ii).

This brief discussion shows that assuming random assignment of the RD score in a
neighborhood near the cutoff does not imply that the potential outcomes and the treatment
are statistically independent, or that the potential outcomes are unrelated to the score
in this neighborhood. Furthermore, as we show formally in Sekhon and Titiunik (2017),
the assumption of local independence between the potential outcomes and the treatment
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assignment does not imply the exclusion restriction that the score affects the outcome only
via the treatment indicator but not directly.

In sum, the RD treatment assignment rule does not by itself place any restrictions on the
ways in which the score can influence the potential outcomes—and even in a locally random
RD design where the score is randomly assigned near the cutoff, the statistical independence
between potential outcomes and treatment assignment that we take for granted in exper-
iments need not follow. This is another reason why we view RD designs as observational
studies.

4. The RD Assumptions and Their Empirical Implications

Lee (2008) heuristically argued that a consequence of interpreting RD designs as local
experiments is that predetermined covariates in treated and control groups should be similar
in a neighborhood of the cutoff. Formally, Lee established continuity of the distribution
of observed predetermined covariates at the cutoff. As a consequence, he proposed to test
whether the treatment has an effect on predetermined covariates at the cutoff to falsify the
RD assumptions—similarly to the way in which balance tests are used in experiments to
evaluate whether the randomization was performed correctly. This emphasis on the need
to test empirically the comparability of treatment and control groups has been a positive
and influential development in the RD literature. By now, falsification tests are a standard
part of most empirical RD applications (see, e.g., Caughey and Sekhon, 2011; de la Cuesta
and Imai, 2016; Eggers et al., 2015).

Under the assumption of continuity of the potential-outcome regression functions, these
“covariate balance” tests should be implemented treating each covariate as an outcome in
the RD analysis—that is, estimating average RD treatment effects on the covariates in the
same way as these effects are estimated for the true outcome of interest. The standard imple-
mentation of continuity-based RD estimation and inference uses local polynomial methods,
fitting a weighted polynomial of the outcome/covariate on the score within an optimally
chosen bandwidth around the cutoff (see, e.g., Calonico et al., 2014, 2016, and references
therein). This implementation allows all predetermined covariates to be arbitrarily related
to the score variable, and looks for an effect at the cutoff. Since the covariates are deter-
mined before treatment is assigned, researchers are reassured when such RD effects on the
covariates cannot be distinguished from zero.

The use of these “covariate balance” tests for falsification is perhaps the most salient
practical similarity between RD analysis and experimental analysis. The assumption behind
the RD falsification tests on covariates is that continuity of the covariate regression functions
implies or at least supports the assumption that the potential-outcome regression functions
are continuous. This is a strong requirement because, as with continuity of the potential-
outcome regression functions, continuity of the covariate regression functions is not implied
by the RD treatment assignment rule. Moreover, continuity of the covariate regression
functions is neither necessary nor sufficient for the potential-outcome regression functions
to be continuous. Thus, falsification tests based on covariates require assumptions that are
not true by construction. Similarly, falsification tests based on the density of the running
variable (McCrary, 2008) require that such density be continuous at the cutoff, another
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condition that is neither necessary nor sufficient for the main RD identification assumption
to hold.

It follows that falsification analysis in RD designs is more demanding than in experimen-
tal settings. In the case of actual experiments, we know that if the random assignment of the
treatment was implemented without errors, the treatment assignment will be independent
of all predetermined covariates (as well as of potential outcomes). Thus, the design itself
implies that the distribution of predetermined covariates in treatment and control groups
is the same, and falsification tests try to corroborate the empirical implication of a balance
condition we know to be true. In contrast, in RD designs, neither the identification as-
sumptions on the potential outcomes nor the falsification assumptions on the covariates are
known to be true, because these assumptions are not implied by the treatment assignment
rule. Precisely for this reason, falsification analysis plays a more crucial role in RD designs
than in experiments, as researchers are eager to provide empirical evidence that the invoked
RD assumptions are plausible. The paradox is that falsification tests are most needed in
those settings where they require more assumptions to be informative. The bottom line is
that identification assumptions are a prerequisite for the data to be informative about the
parameters of interest, and we cannot use the data to test the assumptions that make the
data meaningful in the first place. In general, nonparametric identification assumptions are
fundamentally untestable.

This, of course, does not mean that RD falsification tests are not useful. In most
applications, it is entirely reasonable to assume that if the potential-outcome regression
functions are continuous at the cutoff, most predetermined covariates that are related to the
outcome will also have continuous regression functions. This assumption will be particularly
plausible for certain covariates, such as the outcome measured before treatment assignment
and other variables that are known to be strongly related to the outcome of interest. Our
point is simply that this is an assumption that must be made, in contrast to a feature that
is true by design.

5. Conclusion

In sum, we believe the RD design is an observational study, and should be interpreted as
such. Despite the usefulness of the analogy between RD designs and experiments, RD de-
signs lack the credibility of experiments for the simple reason that the treatment assignment
rule does not guarantee the assumptions that are needed for identification of the treatment
effects of interest. In particular, the RD assignment rule implies neither continuity of the rel-
evant potential-outcome functions nor local independence between the potential outcomes
and the treatment assignment; and the random assignment of the score near the cutoff does
not imply local independence between the potential outcomes and the score or treatment as-
signment. Moreover, falsification tests in RD designs require additional assumptions about
the relationship between the selected predetermined covariates and the potential outcomes.
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