
The Neyman-Rubin Model of Causal Inference and

Estimation via Matching Methods∗

Forthcoming in The Oxford Handbook of Political Methodology,

Janet Box-Steffensmeier, Henry Brady, and David Collier, eds.

Jasjeet S. Sekhon †

11/16/2007 (15:57)

∗I thank Henry Brady, Wendy Tam Cho, David Collier and Roćıo Titiunik for valuable comments
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“Correlation does not imply causation” is one of the most repeated mantras in the social

sciences, but its full implications are sobering and often ignored. The Neyman-Rubin model

of causal inference helps to clarify some of the issues which arise. In this chapter, the model is

briefly described, and some consequences of the model are outlined for both quantitative and

qualitative research. The model has radical implications for work in the social sciences given

current practices. Matching methods, which are usually motivated by the Neyman-Rubin

model, are reviewed and their properties discussed. For example, applied researchers are

often surprised to learn that even if the selection on observables assumption is satisfied, the

commonly used matching methods will generally make even linear bias worse unless specific

and often implausible assumptions are satisfied.

Some of the intuition of matching methods, such as propensity score matching, should

be familiar to social scientists because they share many features with Mill’s methods, or

canons, of inference. Both attempt to find comparable units to compare—i.e., they attempt

to increase unit homogeneity. But Mill never intended for his canons to be used in the

social sciences because he did not believe that unit homogeneity could be achieved in this

field (Sekhon 2004a). Because of its reliance on random assignment and other statistical

apparatus, modern concepts of experimental design sharply diverge from Mill’s deterministic

methods. Modern matching methods adopt Mill’s key insights of the importance of unit

homogeneity to cases where analysts do not control their units precisely. Matching methods,

and related methods such as regression discontinuity, drop observations to make inferences

more precise as well as less biased because unit homogeneity can be improved by removing

some observations from consideration.1 Dropping observations is almost anathema to most

quantitative researchers, but this intuition is wrong with non-experimental data (Rosenbaum

2005). Case study research methods in the tradition of Mill contrast sharply with statistical

methods, and the hunt for necessary and sufficient causes is generally misplaced in the social

sciences given the lack of unit homogeneity.

1Regression discontinuity is discussed in detail in Chapter 15 (Green and Gerber 2008).
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The key probabilistic idea upon which statistical causal inference relies is conditional

probability. But when we are making causal inferences, conditional probabilities are not

themselves of direct interest. We use conditional probabilities to learn about counterfactuals

of interest—e.g., would Jane have voted if someone from the campaign had not gone to her

home to encourage her to do so? One has to be careful to establish the relationship between

the counterfactuals of interest and the conditional probabilities one has managed to estimate.

Researchers too often forget that this relationship must be established by design and instead

rely upon statistical models whose assumptions are almost never defended. A regression

coefficient is not a causal estimate unless a large set of assumptions are met, and this is no

less true of conditional probabilities estimated in other ways such as by matching methods.

Without an experiment, natural experiment, a discontinuity, or some other strong design,

no amount of econometric or statistical modeling can make the move from correlation to

causation persuasive. This conclusion has implications for the kind of causal questions we

are able to answer with some rigor. Clear, manipulable treatments and rigorous designs are

essential.

1 Neyman-Rubin Causal Model

The Neyman-Rubin framework has become increasingly popular in many fields includ-

ing statistics (Holland 1986; Rubin 2006, 1974; Rosenbaum 2002), medicine (Christakis and

Iwashyna 2003; Rubin 1997), economics (Abadie and Imbens 2006; Galiani, Gertler, and

Schargrodsky 2005; Dehejia and Wahba 2002, 1999), political science (Bowers and Hansen

2005; Imai 2005; Sekhon 2004b), sociology (Morgan and Harding 2006; Diprete and En-

gelhardt 2004; Winship and Morgan 1999; Smith 1997) and even law (Rubin 2001). The

framework originated with Neyman’s (1923 [1990]) non-parametric model where each unit

has two potential outcomes, one if the unit is treated and the other if untreated. A causal

effect is defined as the difference between the two potential outcomes, but only one of the two
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potential outcomes is observed. Rubin (2006, 1974), among others, including most notably

Cochran (1965; 1953), developed the model into a general framework for causal inference

with implications for observational research. Holland (1986) wrote an influential review

article which highlighted some of the philosophical implications of the framework. Conse-

quently, instead of the “Neyman-Rubin model,” the model is often simply called the Rubin

causal model (e.g., Holland 1986) or sometimes the Neyman-Rubin-Holland model of causal

inference (e.g., Brady 2008).

Let Yi1 denote the potential outcome for unit i if the unit receives treatment, and let

Yi0 denote the potential outcome for unit i in the control regime. The treatment effect for

observation i is defined by τi = Yi1−Yi0. Causal inference is a missing data problem because

Yi1 and Yi0 are never both observed. This remains true regardless of the methodology used to

make inferential progress—regardless of whether we use quantitative or qualitative methods

of inference. The fact remains that we cannot observe both potential outcomes at the same

time.

Some set of assumptions have to be made to make progress. The most compelling are

offered by a randomized experiment. Let Ti be a treatment indicator: 1 when i is in the

treatment regime and 0 otherwise. The observed outcome for observation i is then Yi =

TiYi1 + (1−Ti)Yi0.
2 Note that in contrast to the usual regression assumptions, the potential

outcomes, Yi1 and Yi1, are fixed quantities and not random variables.

1.1 Experimental Data

In principle, if assignment to treatment is randomized, causal inference is straightforward

because the two groups are drawn from the same population by construction, and treatment

assignment is independent of all baseline variables. As the sample size grows, observed and

unobserved confounders are balanced across treatment and control groups with arbitrarily

2Extensions to the case of multiple discrete treatment are straightforward (e.g., Imbens 2000, Rosenbaum
2002 300–302).
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high probability. That is, with random assignment, the distributions of both observed and

unobserved variables in both groups are equal in expectation. Treatment assignment is

independent of Y0 and Y1—i.e., {Yi0, Yi1 ⊥⊥ Ti}, where ⊥⊥ denotes independence (Dawid

1979). Hence, for j = 0, 1

E(Yij | Ti = 1) = E(Yij | Ti = 0) = E(Yi | Ti = j)

Therefore, the average treatment effect (ATE) can be estimated by:

τ = E(Yi1 | Ti = 1)− E(Yi0 | Ti = 0) (1)

= E(Yi | Ti = 1)− E(Yi | Ti = 0) (2)

Equation 2 can be estimated consistently in an experimental setting because randomiza-

tion can ensure that observations in treatment and control groups are exchangeable. Ran-

domization ensures that assignment to treatment will not, in expectation, be associated with

the potential outcomes.

Even in an experimental setup, much can go wrong which requires statistical adjustment

(e.g., Barnard, Frangakis, Hill, and Rubin 2003). One of the most common problems which

arises is the issue of compliance. People who are assigned to treatment may refuse it, and

those assigned to control may find some way to receive treatment. When there are compliance

issues, Equation 2 then defines the intention-to-treat (ITT) estimand. Although the concept

of ITT dates earlier, the phrase probably first appeared in print in Hill (1961, 259). Moving

beyond the ITT to estimate the average treatment effect on the treated can be difficult. If the

compliance problem is simply that some people assigned to treatment refused it, statistical

correction is straightforward and relatively model free. When the compliance problem has

a more complicated structure, it is difficult to make progress without making structural

assumptions. Statistical corrections for compliance are discussed in detail in Chapter 15 of

this volume (Green and Gerber 2008).
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One of the assumptions which randomization by itself does not justify is that “the ob-

servation on one unit should be unaffected by the particular assignment of treatments to

the other units” (Cox 1958, §2.4). Rubin (1978) calls this “no interference between units”

the Stable Unit Treatment Value Assumption (SUTVA). SUTVA implies that the potential

outcomes for a given unit do not vary with the treatments assigned to any other unit, and

that there are no different versions of treatment. SUTVA is a complicated assumption which

is all too often ignored. It is discussed in detail in Chapter 10 (Brady 2008).

Brady (2008) describes a randomized welfare experiment in California where SUTVA is

violated. In the experiment, teenage girls in the treatment group had their welfare checks

reduced if they failed to obtain passing grades in school. Girls in the control group did not

face the risk of reduced payments. However, some girls in the control group thought that

they were in the treatment group probably because they knew girls in treatment (Mauldon,

Malvin, Stiles, Nicosia, and Seto 2000). Therefore, the experiment probably underestimated

the effect of the treatment.

Some researchers erroneously think that the SUTVA assumption is another word for the

usual independence assumption made in regression models. A hint of the problem can be seen

by noting that OLS is still unbiased under the usual assumptions even if multiple draws from

the disturbance are not independent of each other. When SUTVA is violated, an experiment

will not yield unbiased estimates of the causal effect of interest. In the usual regression setup,

the correct specification assumption (and not the independence assumption) implicitly deals

with SUTVA violations. It is assumed that if there are SUTVA violations, we have the

correct model for them.

Note that even with randomization, the assumptions of the OLS regression model are not

satisfied. Indeed, without further assumptions, the multiple regression estimator is biased,

although the bias goes to zero as the sample size increases. And the regression standard errors

can be seriously biased, even asymptotically. For details see Freedman (2007a,b). Intuitively,

the problem is that generally, even with randomization, the treatment indicator and the
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disturbance will be strongly correlated. Randomization does not imply, as OLS assumes, a

linear additive treatment effect where the coefficients are constant across units. Researchers

should be extremely cautious about using multiple regression to adjust experimental data.

Unfortunately, there is a tendency to do just that. One supposes that this is yet another

sign, as if one more were needed, of how ingrained the regression model is in our quantitative

practice.

The only thing stochastic in the Neyman setup is the assignment to treatment. The

potential outcomes are fixed. This is exactly the opposite of many econometric treatments

where all of the regressors (including the treatment indicator) are considered to be fixed,

and the response variable Y is considered to be a random variable with a given distribution.

None of that is implied by randomization and indeed randomization explicitly contradicts

it because one of the regressors (the treatment indicator) is explicitly random. Adding to

the confusion is the tendency of some texts to refer to the fixed regressors design as an

experiment when that cannot possibly be the case.

1.2 Observational Data

In an observational setting, unless something special is done, treatment and non-treatment

groups are almost never balanced because the two groups are not ordinarily drawn from the

same population. Thus, a common quantity of interest is the average treatment effect for

the treated (ATT):

τ | (T = 1) = E(Yi1 | Ti = 1)− E(Yi0 | Ti = 1). (3)

Equation 3 cannot be directly estimated because Yi0 is not observed for the treated. Progress

can be made by assuming that selection for treatment depends on observable covariates X.

Following Rosenbaum and Rubin (1983), one can assume that conditional on X, treatment

assignment is unconfounded ({Y0, Y1 ⊥⊥ T} | X) and that there is overlap: 0 < Pr(T = 1 | X) < 1.
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Together, unconfoundedness and overlap constitute a property known as strong ignorability

of assignment which is necessary for identifying the treatment effect. Heckman, Ichimura,

Smith, and Todd (1998) shows that for ATT, the unconfoundedness assumption can be

weakened to mean independence: E (Yij | Ti, Xi) = E (Yij | Xi).
3

Then, following Rubin (1974, 1977) we obtain

E(Yij | Xi, Ti = 1) = E(Yij | Xi, Ti = 0) = E(Yi | Xi, Ti = j). (4)

By conditioning on observed covariates, Xi, treatment and control groups are balanced. The

average treatment effect for the treated is estimated as

τ | (T = 1) = E {E(Yi | Xi, Ti = 1)− E(Yi | Xi, Ti = 0) | Ti = 1} , (5)

where the outer expectation is taken over the distribution of Xi | (Ti = 1) which is the

distribution of baseline variables in the treated group.

Note that the ATT estimator is changing how individual observations are weighted,

and that observations which are outside of common support receive zero weights. That

is, if some covariate values are only observed for control observations, those observations

will be irrelevant for estimating ATT and are effectively dropped. Therefore, the overlap

assumption for ATT only requires that the support of X for the treated observations be a

subset of the support of X for control observations. More generally, one would also want to

drop treatment observations if they have covariate values which do not overlap with control

observations (Crump, Hotz, Imbens, and Mitnik 2006). In such cases, it is unclear exactly

the estimand one is estimating because it is no longer ATT as some treatment observations

have been dropped along with some control observations.

It is often jarring for people to observe that observations are being dropped because

of a lack of covariate overlap. But dropping observations which are outside of common

3Also see Abadie and Imbens (2006).
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support not only reduces bias but can also reduce the variance of our estimates. This may

be counter intuitive, but note that our variance estimates are a function of both sample size

and unit heterogeneity—e.g., in the regression case, of the sample variance of X and the

the mean square error. Dropping observations outside of common support and conditioning

as in Equation 5 helps to improve unit homogeneity and may actually reduce our variance

estimates (Rosenbaum 2005). Moreover, as Rosenbaum (2005) shows, with observational

data, minimizing unit heterogeneity reduces both sampling variability and sensitivity to

unobserved bias. With less unit heterogeneity, larger unobserved biases need to exist to

explain away a given effect. And although increasing the sample size reduces sampling

variability, it does little to reduce concerns about unobserved bias. Thus, maximizing unit

homogeneity to the extent possible is an important task for observational methods.

The key assumption being made here is strong ignorability. Even thinking about this

assumption presupposes some rigor in the research design. For example, is it clear what is

pre- and what is post- treatment? If not, one is unable to even form the relevant questions.

The most useful of which may be the one suggested by Dorn (1953, 680) who proposed that

the designer of every observational study should ask “[h]ow would the study be conducted if

it were possible to do it by controlled experimentation?” This clear question also appears in

Cochran’s famous Royal Statistical Society discussion paper on the planning of observational

studies of human populations (1965). And Dorn’s question has become one which researchers

in the tradition of the Neyman-Rubin model ask themselves and their students. The question

forces the researcher to focus on a clear manipulation and then on the selection problem

at hand. Only then can one even begin to think clearly about how plausible the strong

ignorability assumption may or may not be. It is fair to say that without answering Dorn’s

question, one is unsure what the researcher wants to estimate. Since most researchers do

not propose an answer to this question, it is difficult to think clearly about the underlying

assumptions being made in most applications in the social sciences because one is unclear

as to what precisely the researcher is trying to estimate.
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For the moment let us assume that the researcher has a clear treatment of interest, and

a set of confounders which may reasonably ensure conditional independence of treatment

assignment. At that point, one needs to condition on these confounders denoted by X. But

we must remember that selection on observables is a large concession, which should not be

made lightly. It is of far greater relevance than the technical discussion which follows on the

best way to condition on covariates.

2 Matching Methods

There is no consensus on how exactly matching ought to be done, how to measure the

success of the matching procedure, and whether or not matching estimators are sufficiently

robust to misspecification so as to be useful in practice (Heckman et al. 1998). The most

straightforward and nonparametric way to condition on X is to exactly match on the co-

variates. This is an old approach going back to at least Fechner (1966 [1860]), the father

of psychophysics. This approach fails in finite samples if the dimensionality of X is large

and is simply impossible if X contains continuous covariates. Thus, in general, alternative

methods must be used.

Two common approaches are propensity score matching (Rosenbaum and Rubin 1983)

and multivariate matching based on Mahalanobis distance (Cochran and Rubin 1973; Ru-

bin 1979, 1980). Matching methods based on the propensity score (estimated by logistic

regression), Mahalanobis distance or a combination of the two have appealing theoretical

properties if covariates have ellipsoidal distributions—e.g., distributions such as the normal

or t. If the covariates are so distributed, these methods (more generally affinely invariant

matching methods4) have the property of “equal percent bias reduction” (EPBR) (Rubin

1976a,b; Rubin and Thomas 1992).5 This property, which is formally defined in Appendix A,

4Affine invariance means that the matching output is invariant to matching on X or an affine transfor-
mation of X.

5The EPBR results of Rubin and Thomas (1992) have been extended by Rubin and Stuart (2005) to the
case of discriminant mixtures of proportional ellipsoidally symmetric (DMPES) distributions. This extension
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ensures that matching methods will reduce bias in all linear combinations of the covariates.

If a matching method is not EPBR, then that method will, in general, increase the bias for

some linear function of the covariates even if all univariate means are closer in the matched

data than the unmatched (Rubin 1976a).

2.1 Mahalanobis and Propensity Score Matching

The most common method of multivariate matching is based on Mahalanobis distance

(Cochran and Rubin 1973; Rubin 1979, 1980). The Mahalanobis distance between any two

column vectors is:

md(Xi, Xj) = {(Xi −Xj)
′S−1(Xi −Xj)}

1
2

where S is the sample covariance matrix of X. To estimate ATT, one matches each treated

unit with the M closest control units, as defined by this distance measure, md().6 If X

consists of more than one continuous variable, multivariate matching estimates contain a

bias term which does not asymptotically go to zero at
√

n (Abadie and Imbens 2006).

An alternative way to condition on X is to match on the probability of assignment to

treatment, known as the propensity score.7 As one’s sample size grows large, matching on

the propensity score produces balance on the vector of covariates X (Rosenbaum and Rubin

1983).

Let e(Xi) ≡ Pr(Ti = 1 | Xi) = E(Ti | Xi), defining e(Xi) to be the propensity score.

Given 0 < Pr(Ti | Xi) < 1 and that Pr(T1, T2, · · ·TN | X1, X2, · · ·XN) = ΠN
i=1e(Xi)

Ti(1 −

is important, but it is restricted to a limited set of mixtures. See Appendix A.
6One can do matching with replacement or without. Alternatively one can do optimal full matching

(Hansen 2004; Rosenbaum 1991) instead of the greedy matching. But this decision is a separate one from
the choice of a distance metric.

7The first estimator of treatment effects to be based on a weighted function of the probability of treatment
was the Horvitz-Thompson statistic (Horvitz and Thompson 1952).
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e(Xi))
(1−Ti), then as Rosenbaum and Rubin (1983) prove,

τ | (T = 1) = E {E(Yi | e(Xi), Ti = 1)− E(Yi | e(Xi), Ti = 0) | Ti = 1} ,

where the outer expectation is taken over the distribution of e(Xi) | (Ti = 1). Since the

propensity score is generally unknown, it must be estimated.

Propensity score matching involves matching each treated unit to the nearest control

unit on the unidimensional metric of the propensity score vector. If the propensity score is

estimated by logistic regression, as is typically the case, much is to be gained by matching not

on the predicted probabilities (bounded between zero and one) but on the linear predictor:

µ̂ = Xβ̂. Matching on the linear predictor avoids compression of propensity scores near zero

and one. Moreover, the linear predictor is often more nearly normally distributed which is

of some importance given the EPBR results if the propensity score is matched along with

other covariates.

Mahalanobis distance and propensity score matching can be combined in various ways

(Rubin 2001; Rosenbaum and Rubin 1985). It is useful to combine the propensity score with

Mahalanobis distance matching because propensity score matching is particularly good at

minimizing the discrepancy along the propensity score and Mahalanobis distance is partic-

ularly good at minimizing the distance between individual coordinates of X (orthogonal to

the propensity score) (Rosenbaum and Rubin 1985).

A significant shortcoming of common matching methods, such as Mahalanobis distance

and propensity score matching, is that they may (and in practice, frequently do) make

balance worse across measured potential confounders. These methods may make balance

worse, in practice, even if covariates are distributed ellipsoidally symmetric, because EPBR

is a property that obtains in expectation. That is, even if the covariates have elliptic dis-

tributions, finite samples may not conform to ellipticity, and hence Mahalanobis distance

may not be optimal because the matrix used to scale the distances, the covariance matrix
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of X, can be improved upon.8 Moreover, if covariates are neither ellipsoidally symmetric

nor are mixtures of DMPES distributions, propensity score matching has good theoretical

properties only if the true propensity score model is known with certainty and the sample

size is large.

The EPBR property itself is limited and in a given substantive problem it may not be

desirable. This can arise if it is known based on theory that one covariate has a large

nonlinear relationship with the outcome while another does not—e.g., Y = X4
1 + X2, where

X > 1 and where both X1 and X2 have the same distribution. In such a case, reducing bias

in X1 will be more important than X2.

Given these limitations, it may be desirable to use a matching method which algorithmi-

cally imposes certain properties when the EPBR property does not hold. Genetic Matching

does just that.

2.2 Genetic Matching

Sekhon (2007) and Diamond and Sekhon (2005) propose a matching algorithm, Genetic

Matching, which maximizes the balance of observed covariates between treated and control

groups. Genetic Matching is a generalization of propensity score and Mahalanobis distance

matching, and it has been used by a variety of researchers (e.g., Bonney and Minozzi 2007;

Brady and Hui 2006; Gilligan and Sergenti 2006; Gordon and Huber 2007; Herron and

Wand forthcoming; Morgan and Harding 2006; Lenz and Ladd 2006; Park 2006; Raessler

and Rubin 2005). The algorithm uses a genetic algorithm (Mebane and Sekhon 1998; Sekhon

and Mebane 1998) to optimize balance as much as possible given the data. The method is

nonparametric and does not depend on knowing or estimating the propensity score, but

the method is improved when a propensity score is incorporated. Diamond and Sekhon

(2005) use this algorithm to show that the long running debate between Dehejia and Wahba

8For justifications of Mahalanobis distance based on distributional considerations see Mitchell and
Krzanowski (1985, 1989).
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(2002; 1997; 1999; Dehejia 2005) and Smith and Todd (2005b,a, 2001) is largely a result of

researchers using models which do not produce good balance—even if some of the models get

close by chance to the experimental benchmark of interest. They show that Genetic Matching

is able to quickly find good balance and reliably recover the experimental benchmark.

The idea underlying the Genetic Matching algorithm is that if Mahalanobis distance is not

optimal for achieving balance in a given dataset, one should be able to search over the space

of distance metrics and find something better. One way of generalizing the Mahalanobis

metric is to include an additional weight matrix:

d(Xi, Xj) =
{

(Xi −Xj)
′ (S−1/2

)′
WS−1/2(Xi −Xj)

} 1
2

where W is a k × k positive definite weight matrix and S1/2 is the Cholesky decomposition

of S which is the variance-covariance matrix of X.9

Note that if one has a good propensity score model, one should include it as one of

the covariates in Genetic Matching. If this is done, both propensity score matching and

Mahalanobis matching can be considered special limiting cases of Genetic Matching. If the

propensity score contains all of the relevant information in a given sample, the other variables

will be given zero weight.10 And Genetic Matching will converge to Mahalanobis distance if

that proves to be the appropriate distance measure.

Genetic Matching is an affinely invariant matching algorithm that uses the distance

measure d(), in which all elements of W are zero except down the main diagonal. The

main diagonal consists of k parameters which must be chosen. Note that if each of these k

parameters are set equal to 1, d() is the same as Mahalanobis distance.

The choice of setting the non-diagonal elements of W to zero is made for reasons of

computational power alone. The optimization problem grows exponentially with the number

9The Cholesky decomposition is parameterized such that S = LL′, S1/2 = L. In other words, L is a
lower triangular matrix with positive diagonal elements.

10Technically, the other variables will be given weights just large enough to ensure that the weight matrix
is positive definite.
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of free parameters. It is important that the problem be parameterized so as to limit the

number of parameters which must be estimated.

This leaves the problem of how to choose the free elements of W . Many loss criteria

recommend themselves, and many can be used with the software which implements Ge-

netic Matching.11 By default, cumulative probability distribution functions of a variety of

standardized statistics are used as balance metrics and are optimized without limit. The de-

fault standardized statistics are paired t-tests and bootstrapped nonparametric Kolmogorov-

Smirnov tests (Abadie 2002).

The statistics are not used to conduct formal hypothesis tests, because no measure of

balance is a monotonic function of bias in the estimand of interest and because we wish

to maximize balance without limit. Alternatively, one may choose to minimize some de-

scriptive measure of imbalance such as the maximum gap in the standardized empirical-QQ

plots across the covariates. This would correspond to minimizing the D statistic of the

Kolmogorov-Smirnov test.

Conceptually, the algorithm attempts to minimize the largest observed covariate discrep-

ancy at every step. This is accomplished by maximizing the smallest p-value at each step.12

Because Genetic Matching is minimizing the maximum discrepancy observed at each step, it

is minimizing the infinity norm. This property holds even when, because of the distribution

of X, the EPBR property does not hold. Therefore, if an analyst is concerned that matching

may increase the bias in some linear combination of X even if the means are reduced, Genetic

Matching allows the analyst to put in the loss function all of the linear combinations of X

which may be of concern. Indeed, any nonlinear function of X can also be included in the

loss function, which would ensure that bias in some nonlinear functions of X is not made

inordinately large by matching.

11See http://sekhon.berkeley.edu/matching.
12More precisely, lexical optimization will be done: all of the balance statistics will be sorted from the most

discrepant to the least and weights will be picked which minimize the maximum discrepancy. If multiple
sets of weights result in the same maximum discrepancy, then the second largest discrepancy is examined to
choose the best weights. The processes continues iteratively until ties are broken.

14

http://sekhon.berkeley.edu/matching


The default Genetic Matching loss function does allow for imbalance in functions of X

to worsen as long as the maximum discrepancy is reduced. This default behavior can be

altered by the analyst. It is important that the maximum discrepancy be small—i.e., that

the smallest p-value be large. The p-values conventionally understood to signal balance (e.g.,

0.10), may be too low to produce reliable estimates. After Genetic Matching optimization,

the p-values from these balance tests cannot be interpreted as true probabilities because

of standard pre-test problems, but they remain useful measures of balance. Also, we are

interested in maximizing the balance in the current sample so a hypothesis test for balance

is inappropriate.

The optimization problem described above is difficult and irregular, and the genetic

algorithm implemented in the R rgenoud package (Mebane and Sekhon 1998) is used to

conduct the optimization. Details of the algorithm are provided in Sekhon and Mebane

(1998).

Genetic Matching is shown to have better properties than the usual alternative matching

methods both when the EPBR property holds and when it does not (Sekhon 2007; Diamond

and Sekhon 2005). Even when the EPBR property holds and the mapping from X to Y

is linear, Genetic Matching has better efficiency—i.e., lower mean square error (MSE)—in

finite samples. When the EPBR property does not hold as it generally does not, Genetic

Matching retains appealing properties and the differences in performance between Genetic

Matching and the other matching methods can become substantial both in terms of bias and

MSE reduction. In short, at the expense of computer time, Genetic Matching dominates the

other matching methods in terms of MSE when assumptions required for EPBR hold and,

even more so, when they do not.

Genetic Matching is able to retain good properties even when EPBR does not hold

because a set of constraints is imposed by the loss function optimized by the genetic al-

gorithm. The loss function depends on a large number of functions of covariate imbalance

across matched treatment and control groups. Given these measures, Genetic Matching will
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optimize covariate balance.

3 Case Study Research Methods

Matching designs have long been used by social scientists conducting qualitative research

methods. But case study matching methods often rely on the assumption that the relation-

ships between the variables of interest are deterministic. This is unfortunate because failure

to heed the lessons of statistical inference often leads to serious inferential errors, some of

which are easy to avoid. The canonical example of deterministic matching designs methods

is the set of rules (canons) of inductive inference formalized by John Stuart Mill in his A

System of Logic (1872).

The “most similar” and the “most different” research designs, which are often used in

comparative politics, are variants of Mill’s methods (Przeworski and Teune 1970). As such,

Mill’s methods have been used by generations of social science researchers (Cohen and Nagel

1934), but they contrast sharply with statistical methods. These methods do not lead to

valid inductive inferences unless a number of very special assumptions hold. Some researchers

seem to be either unaware or unconvinced of these methodological difficulties even though

the acknowledged originator of the methods, Mill himself, clearly described many of their

limitations.

These canonical qualitative methods of causal inference are only valid when the hy-

pothesized relationship between the cause and effect of interest is unique and deterministic.

These two conditions imply other conditions such as the absence of measurement error which

would cease to make the hypothesized causal relationship deterministic as least as we observe

it. These assumptions are strict, and they strongly restrict the applicability of the meth-

ods. When these methods of inductive inference are not applicable, conditional probabilities

should be used to compare the relevant counterfactuals.13

13Needless-to-say, although Mill was familiar with the work of Laplace and other 19th century statisti-
cians, by today’s standards his understanding of estimation and hypothesis testing was simplistic and often
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For these methods to lead to valid inferences there must be only one possible cause of the

effect of interest, the relationship between cause and effect must be deterministic, and there

must be no measurement error. If these assumptions are to be relaxed, random factors must

be accounted for. Because of these random factors, statistical and probabilistic methods of

inference are necessary.

To appreciate how serious these limitations are, consider the case of benchmarking statis-

tical software on modern computer systems—for details see Sekhon (2006). Such computers

are Turing machines hence they are deterministic systems where everything a computer does

is in theory observable. To put it another way, your random number generator is not re-

ally random. Your pseudorandom numbers are the result of a deterministic algorithm. But

notwithstanding the deterministic nature of a computer, methods like those proposed by

qualitative researchers for making inferences with deterministic systems are not used in the

benchmarking literature. When benchmarking, it is common to match on (and hence elimi-

nate) as many confounders as possible and to report measures of uncertainty and statistical

hypothesis tests. Since computers are deterministic, the remaining uncertainty must come

from confounders—as opposed to sampling error—which could in theory be observed and

hence eliminated. But the system is considered to be so complex that most benchmarking

exercises resort to statistical measures of association. Thus, even in this setting where we

know we are dealing with a deterministic system, benchmarking exercises rely on statistical

measures because of the complexity involved. Certainly society is more complex than a

computer and our social measurements are more prone to error than those of computers.

3.1 Mill’s Methods and Conditional Probabilities

Since the application of the five methods Mill discusses has a long history in the social

sciences, I am hardly the first to criticize the use of these methods in all but very special

erroneous. He did, however, understand that if one wants to make valid empirical inferences, one needs to
obtain and compare conditional probabilities when there may be more than one possible cause of an effect
or when the causal relationship is complicated by interaction effects.
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circumstances. For example, Robinson, who is well known in political science for his work

on the ecological inference problem,14 also criticized the use of Mill-type methods of analytic

induction in the social sciences (Robinson 1951). Robinson’s critique did not, however, focus

on conditional probabilities nor did he observe that Mill himself railed against the exact use

to which his methods have been put. Many other critics will be encountered in the course

of our discussion.

Przeworski and Teune, in an influential book, advocate the use of what they call the “most

similar” design and the “most different” design (Przeworski and Teune 1970). These designs

are variations on Mill’s methods. The first is a version of Mill’s Method of Agreement, and the

second is a weak version of Mill’s Method of Difference. Although the Przeworski and Teune

volume is over 30 years old, their argument continues to be influential. For example, Ragin,

Berg-Schlosser, and de Meur in a recent review of qualitative methods make direct supportive

references to both Mill’s methods and Przeworski and Teune’s formulations (Ragin et al.

1996). However, even when authors such as Ragin et al. recognize that Mill’s methods need

to be altered for use in the social sciences, usually follow neither the advice of quantitative

methodologists nor Mill’s own advice regarding the use of conditional probabilities.15

Mill described his views on scientific investigations in A System of Logic Ratiocinative

and Inductive, first published in 1843.16 In an often cited chapter (bk. III, ch. 8), Mill

formulates five guiding methods of induction: the Method of Agreement, the Method of

Difference, the Double Method of Agreement and Difference (also known as the Indirect

Method of Difference), the Method of Residues, and the Method of Concomitant Variations.

These methods are often counted to be only four because the Double Method of Agreement

and Difference may be considered to be just a derivative of the first two methods. This is

14Ecological inferences are inferences about individual behavior which are based on data of group behavior,
called aggregate or ecological data.

15For details on the relationship between qualitative comparative analysis and standard regression see
Seawright (2004).

16For all page referencing I have used a reprint of the eighth edition of A System of Logic Ratiocinative
and Inductive, first published in 1872. The eighth edition was the last printed in Mill’s lifetime. The eighth
and third editions were especially revised and supplemented with new material.
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a mistake because it obscures the tremendous difference between the combined method or

what Mill calls the Indirect Method of Difference and the Direct Method of Difference (Mill

1872, 259). Both the Method of Agreement and the Indirect Method of Difference, which is

actually the Method of Agreement applied twice, are limited and require the machinery of

probability in order to take chance into account when considering cases where the number of

causes may be greater than one or where there may be interactions between the causes (Mill

1872, 344). Other factors not well explored by Mill, such as measurement error, lead to the

same conclusion (Lieberson 1991). The Direct Method of Difference is almost entirely limited

to the experimental setting. And even in the case of the Direct Method of Difference, chance

must be taken into account in the presence of measurement error or if there are interactions

between causes which lead to probabilistic relationships between a cause, A, and its effect,

a.

Next, we review Mill’s first three canons and show the importance of taking chance into

account and comparing conditional probabilities when chance variations cannot be ignored.

3.1.1 First Canon: Method of Agreement

“If two or more instances of the phenomenon under investigation have only one

circumstance in common, the circumstance in which alone all the instances agree

is the cause (or effect) of the given phenomenon” (Mill 1872, 255).

Assume that the possible causes, i.e., antecedents, under consideration are denoted by

A, B, C,D, E, and the effect we are interested in is denoted by a.17 An antecedent may

be comprised of more than one constituent event or condition. For example, permanganate

ion with oxalic acid forms carbon dioxide (and manganous ion). Separately, neither perman-

ganate ion nor oxalic acid will produce carbon dioxide, but if combined, they will. In this

example, A may be defined as the presence of both permanganate ion and oxalic acid.

17Following Mill’s usage, my usage of the word “antecedent” is synonymous with “possible cause.” Neither
Mill nor I intend to imply that events must be ordered in time to be causally related.
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Let us further assume that we observe two instances and in the first we observe the

antecedents A, B, C, and in the second we observe the antecedents A, D,E. If we also observe

the effect, a, in both cases, we would say, following Mill’s Method of Agreement, that A is

the cause of a. We conclude this because A was the only antecedent which occurred in both

observations—i.e., the observations agree on the presence of antecedent A. This method has

eliminated antecedents B, C, D,E as possible causes of a. Using this method, we endeavor

to obtain observations which agree in the effect, a, and the supposed cause, A, but differ in

the presence of other antecedents.

3.1.2 Second Canon: Method of Difference

“If an instance in which the phenomenon under investigation occurs, and an

instance in which it does not occur, have every circumstance in common save

one, that one occurring only in the former; the circumstance in which alone the

two instances differ is the effect, or the cause, or an indispensable part of the

cause, of the phenomenon” (Mill 1872, 256).

In the Method of Difference we require, contrary to the Method of Agreement, observa-

tions resembling one another in every other respect, but differing in the presence or absence

of the antecedent we conjecture to be the true cause of a. If our object is to discover the

effects of an antecedent A, we must introduce A into some set of circumstances we consider

relevant, such as B, C, and having noted the effects produced, compare them with the effects

of the remaining circumstances B, C, when A is absent. If the effect of A, B, C is a, b, c, and

the effect of B, C is b, c, it is evident, under this argument, that the cause of a is A.

Both of these methods are based on a process of elimination. This process has been

understood since Francis Bacon to be a centerpiece of inductive reasoning (Pledge 1939).

The Method of Agreement is supported by the argument that whatever can be eliminated is

not connected with the phenomenon of interest, a. The Method of Difference is supported

by the argument that whatever cannot be eliminated is connected with the phenomenon by
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a law. Because both methods are based on the process of elimination, they are deterministic

in nature. For if even one case is observed where effect a occurs without the presence of

antecedent A, we would eliminate antecedent A from causal consideration.

Mill asserts that the Method of Difference is commonly used in experimental science while

the Method of Agreement, which is substantially weaker, is employed when experimentation

is impossible (Mill 1872, 256). The Method of Difference is Mill’s attempt to describe the

inductive logic of experimental design. And the method takes into account two of the key

features of experimental design, the first being the presence of a manipulation (treatment)

and the second a comparison between two states of the world which are in Mill’s case exactly

alike aside from the presence of the antecedent of interest.18 The method also incorporates

the notion of a relative causal effect. The effect of antecedent A is measured relative to the

effect observed in the most similar world without A. The two states of the world we are

considering only differ in the presence or absence of A.

The Method of Difference only accurately describes a small subset of experiments. The

method is too restrictive even if the relationship between the antecedent A and effect a were

to be deterministic. Today we would say that the control group B, C and the group with

the intervention A, B, C need not be exactly alike (aside from the presence or absence of A).

It would be fantastic if the two groups were exactly alike, but such a situation is not only

extremely difficult to find but also not necessary. Some laboratory experiments are based on

this strong assumption, but a more common assumption, and one which brings in statistical

concerns, is that observations in both groups are balanced before our intervention. That is,

before we apply the treatment, the distributions of both observed and unobserved variables

in both groups are equal. For example, if group A is the southern states in the United States

and group B is the northern states, the two groups are not balanced. The distribution of a

18The requirement of a manipulation by the researcher has troubled many philosophers of science. But the
claim is not that causality requires a human manipulation, but only that if we wish to measure the effect of
a given antecedent we gain much if we are able to manipulate the antecedent. For example, manipulation of
the antecedent of interest allows us to be confident that the antecedent caused the effect and not the other
way around—see Brady (2008).
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long list of variables is different between the two groups.

Random assignment of treatment ensures, if the sample size is large and if other as-

sumptions are met, that the control and treatment groups are balanced even on unobserved

variables.19 Random assignment ensures that the treatment is uncorrelated with all baseline

variables20 whether we can observe them or not.21

Because of its reliance on random assignment, modern concepts of experimental design

sharply diverge from Mill’s deterministic model. The two groups are not exactly alike in

baseline characteristics (as they would have to be in a deterministic setup), but, instead,

their baseline characteristics have the same distribution. And consequently the baseline

variables are uncorrelated with whether a particular unit received treatment or not.

When the balance assumption is satisfied, a modern experimenter estimates the relative

causal effect by comparing the conditional probability of some outcome given the treatment

minus the conditional probability of the outcome given that the treatment was not received.

In the canonical experimental setting, conditional probabilities can be directly interpreted

as causal effects.

In the penultimate section of this chapter, I discuss the complications which arise in

using conditional probabilities to make causal inferences when randomization of treatment

is not possible. With observational data (i.e., data found in nature and not a product of

experimental manipulation), many complications arise which prevent conditional probabili-

ties from being directly interpreted as estimates of causal effects. Problems also often arise

with experiments which prevent the simple conditional probabilities from being interpreted

as relative causal effects. School voucher experiments are a good example.22 But the prob-

19Aside from a large sample size, experiments need to also meet a number of other conditions. See
Campbell and Stanley (1966) for an overview particularly relevant for the social sciences. An important
problem with experiments dealing with human beings is the issue of compliance. Full compliance implies
that every person assigned to treatment actually receives the treatment and every person assigned to control
does not. Fortunately, if noncompliance is an issue, there are a number of possible corrections which make
few and reasonable assumptions—see Barnard et al. (2003).

20Baseline variables are the variables observed before treatment is applied.
21More formally, random assignment results in the treatment being stochastically independent of all base-

line variables as long as the sample size is large and other assumptions are satisfied.
22Barnard et al. (2003) discuss in detail a broken school voucher experiment and a correction using strat-
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lems are more serious with observational data where neither a manipulation nor balance are

present.23

One of the continuing appeals of deterministic methods for case study researchers is the

power of the methods. For example, Mill’s Method of Difference can determine causality with

only two observations. This power can only be obtained by assuming that the observation

with the antecedent of interest, A, B, C and the one without, B, C are exactly alike accept

for the manipulation of A, and by assuming deterministic causation and the absence of

measurement error and interactions among antecedents. This power makes deterministic

methods alluring for case study researchers, who generally don’t have many observations.

Once probabilistic factors are introduced, larger numbers of observations are required to

make useful inferences. Because of the power of deterministic methods, social scientists

with a small number of observations are tempted to rely on Mill’s methods. Because these

researchers cannot conduct experiments, they largely rely on the Method of Agreement,

which we have discussed, and Mill’s third canon.

3.1.3 Third Canon: Indirect Method of Difference

“If two or more instances in which the phenomenon occurs have only one cir-

cumstance in common, while two or more instances in which it does not occur

have nothing in common save the absence of that circumstance, the circumstance

in which alone the two sets of instances differ is the effect, or the cause, or an

indispensable part of the cause, of the phenomenon” (Mill 1872, 259).

This method arises by a “double employment of the Method of Agreement” (Mill 1872,

258). If we observe a set of observations in all of which we observe a and note that they have

no antecedent in common but A, by the Method of Agreement we have evidence that A is

ification.
23In an experiment much can go wrong (e.g., compliance and missing data problems), but the fact that

there was a manipulation can be very helpful in correcting the problems—Barnard et al. (2003). Corrections
are more problematic in the absence of an experimental manipulation because additional assumptions are
required.
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the cause of the effect a. Ideally, we would then perform an experiment where we manipulate

A to see if the effect a is present when the antecedent A is absent. When we cannot conduct

such an experiment, we can instead use the Method of Agreement again. Suppose, we can

find another set of observations in which neither the antecedent A nor the effect a occur.

We may now conclude, by use of the Indirect Method of Difference, that A is the cause of a.

Thus, by twice using the Method of Agreement we may hope to establish both the positive

and negative instance which the Method of Difference requires. However, this double use of

the Method of Agreement is clearly inferior. The Indirect Method of Difference cannot fulfill

the requirements of the Direct Method of Difference. For, “the requisitions of the Method of

Difference are not satisfied unless we can be quite sure either that the instances affirmative

of a agree in no antecedents whatever but A, or that the instances negative of a agree in

nothing but the negation of A” (Mill 1872, 259). In other words, the Direct Method of

Difference is the superior method because it entails a strong manipulation: we manipulate

the antecedents so that we can remove the suspected cause, A, and then put it back at will,

without disturbing the balance of what may lead to a. And this manipulation ensures that

the only difference in the antecedents between the two observations is the presence of A or

its lack.

Researchers are often unclear about these distinctions between the indirect and direct

methods of difference. They often simply state they are using the Method of Difference

when they are actually only using the Indirect Method of Difference. For example, Skocpol

states that she is using both the Method of Agreement and the “more powerful” Method of

Difference when she is only using at best the weaker Method of Agreement twice (Skocpol

1979, 36–37). It is understandable that Skocpol is not able to use the Direct Method of

Difference since it would be impossible to manipulate the factors of interest. But it is

important to be clear about exactly which method one is using.

Mill discusses two other canons: the Method of Residues (Fourth Canon) and the Method

of Concomitant Variations (Fifth Canon). We do not review these canons because they are
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not directly relevant to our discussion.

We have so far outlined the three methods of Mill with which we are concerned. We

have also shown that when scholars such as Skocpol assert that they are using the Method

of Agreement and the Method of Difference (Skocpol 1979, 37), they are actually using the

Indirect Method of Difference, and that this is indeed the weaker sibling of the Direct Method

of Difference. This weakness would not be of much concern if the phenomena we studied

were simple. However, in the social sciences we encounter serious causal complexities.

Mill’s methods of inductive inference are valid only if the mapping between antecedents

and effects is unique and deterministic (Mill 1872, 285–299, 344–350). These conditions

allow neither for more than one cause for an effect nor for interactions between causes. In

other words, if we are interested in effect a, we must assume a priori that only one possible

cause exists for a and that when a’s cause is present, say cause A, the effect, a, must

always occur. In fact, these two conditions, of uniqueness and determinism, define the set

of antecedents we are considering. This implies, for example, that the elements in the set

of causes A, B, C,D, E must be able to occur independently of each other. The condition is

not that antecedents must be independent in the probabilistic sense of the word, but that

any one of the antecedents can occur without necessitating the presence or lack thereof of

any of the other antecedents. Otherwise, the possible effects of antecedents are impossible

to distinguish by these rules.24 Generalizations of Mill’s methods also suffer from these

limitations (Little 1998, 221-223).

The foregoing has a number of implications the most important of which is that for

deterministic methods such as Mill’s to work there must be no measurement error. For even

if there were a deterministic relationship between antecedent A and effect a, if we were able

to measure either A or a only with some stochastic error, the resulting observed relationship

24Mill’s methods have additional limitations which are outside the scope of this discussion. For example,
there is a set of conditions, call it Z, which always exists but is unconnected with the phenomenon of interest.
For example, the star Sirius is always present (but not always observable) whenever it rains in Boston. Is
the star Sirius and its gravitational force causally related to rain in Boston? Significant issues arise from
this question which I do not discuss.
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would be probabilistic. It would be probabilistic because it would be possible to observe a

case in which we mistakenly think we have observed antecedent A (because of measurement

error) while not observing a. In such a situation the process of elimination would lead us to

conclude that A is not a cause of a.

To my knowledge no modern social scientist argues that the conditions of uniqueness

and lack of measurement error hold in the social sciences. However, the question of whether

deterministic causation is plausible has a sizable literature.25 Most of this discussion cen-

ters on whether deterministic relationships are possible—i.e., on the ontological status of

deterministic causation.26 Although such discussions can be fruitful, we need not decide

the ontological issues in order to make empirical progress. This is fortunate because the

ontological issues are at best difficult to resolve and may be impossible to resolve. Even if

one concedes that deterministic social associations exist, it is unclear how we would ever

learn about them if there are multiple causes with complex interactions or if our measures

are noisy. The case of multiple causes and complex interactions among deterministic as-

sociations would, to us, look probabilistic in the absence of a theory (and measurements)

which accurately accounted for the complicated causal mechanisms—e.g., Little (1998, ch.

11). There appears to be some agreement among qualitative and quantitative researchers

that there is “complexity-induced probabilism” (Bennett 1998). Thus, I think it is more

fruitful to focus instead on the practical issue of how we learn about causes—i.e., on the

epistemological issues related to causality.27

Focusing on epistemological issues also helps to avoid some thorny philosophical questions

regarding the ontological status of probabilistic notions of causality. For example, if one can

accurately estimate the probability distribution of A causing a, does that mean that we can

explain any particular occurrence of a? Wesley Salmon, after surveying three prominent

theories of probabilistic causality in the mid-1980s, noted that “the primary moral I drew

25See Waldner (2002) for an overview.
26Ontology is the branch of philosophy concerned with the study of existence itself.
27Epistemology is the branch of philosophy concerned with the theory of knowledge, in particular, the

nature and derivation of knowledge, its scope and the reliability of claims to knowledge.
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was that causal concepts cannot be fully explicated in terms of statistical relationships; in

addition, I concluded, we need to appeal to causal processes and causal interactions” (Salmon

1989, 168). I do not think these metaphysical issues ought to concern practicing scientists.

Faced with multiple causes and interactions what is one to do? There are two dominant

responses. The first relies on detailed (usually formal) theories which make precise empirical

predictions which distinguish between the theories. Such theories are usually tested by

laboratory experiments with such strong manipulations and careful controls that one may

reasonably claim to have obtained exact balance and the practical absence of measurement

error. Such manipulations and controls allow one to use generalizations of the Method of

Difference. A large number of theories in physics offer canonical examples of this approach.

Deduction plays a prominent role in this approach.28

The second response relies on conditional probabilities and counterfactuals. These re-

sponses are not mutually exclusive. Economics, for example, is a field which relies heavily

on both formal theories and statistical empirical tests. Indeed, unless the proposed formal

theories are nearly complete, there will always be a need to take random factors into ac-

count. And even the most ambitious formal modeler will no doubt concede that a complete

deductive theory of politics is probably impossible. Given that our theories are weak, our

causes complex and data noisy, we cannot avoid conditional probabilities. Even researchers

sympathetic to finding necessary or sufficient causes are often led to probability given these

problems (e.g., Ragin 2000).

4 From Conditional Probabilities to Counterfactuals

Although conditional probability is at the heart of inductive inference, by itself it isn’t

enough. Underlying conditional probability is a notion of counterfactual inference. It is

28Mill places great importance on deduction in the three step process of “induction, ratiocination, and
verification” Mill (1872, 304). But on the whole, although the term ratiocinative is in the title of Mill’s
treatise and even appears before the term inductive, Mill devotes little space to the issue of deductive
reasoning.
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possible to have a causal theory that makes no reference to counterfactuals (Brady 2008;

Dawid 2000), but counterfactual theories of causality are by far the norm, especially in

statistics. The Method of Difference is motivated by a counterfactual notion: I would like

to see what happens both with antecedent A and without A. When I use the Method of

Difference, I don’t conjecture what would happen if A were absent. I remove A and actually

see what happens. Implementation of the method obviously depends on a manipulation.

Although manipulation is an important component of experimental research, manipulations

as precise as those entailed by the Method of Difference are not possible in the social sciences

in particular and with field experiments in general.

We have to depend on other means to obtain information about what would occur both if

A is present and if A is not. In many fields, a common alternative to the Method of Difference

is a randomized experiment. For example, we could either contact Jane to prompt her to

vote as part of a turnout study or we could not contact her. But we cannot observe what

would happen if we both contacted Jane and if we did not contact Jane—i.e., we cannot

observe Jane’s behavior both with and without the treatment. If we contact Jane, in order

to determine what effect this treatment had on Jane’s behavior (i.e, whether she voted or

not), we still have to obtain some estimate of the counterfactual in which we did not contact

Jane. We could, for example, seek to compare Jane’s behavior with someone exactly like

Jane whom we did not contact. The reality, however, is that there is no one exactly like Jane

with whom we can compare Jane’s turnout decision. Instead, in a randomized experiment

we obtain a group of people (the larger the better) and we assign treatment to a randomly

chosen subset (to contact) and we assign the remainder to the control group (not to be

contacted). We then observe the difference in turnout rates between the two groups and we

attribute any differences to our treatment.

In principle the process of random assignment results in the observed and unobserved

baselines variables of the two groups being balanced.29 In the simplest setup, individuals in

29This occurs with arbitrarily high probability as the sample size grows.
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both groups are supposed to be equally likely to receive the treatment, and hence assignment

to treatment will not be associated with anything which may also affect one’s propensity

to vote. In an observational setting, unless something special is done, the treatment and

non-treatment groups are almost never balanced.

The core counterfactual motivation is often forgotten when researchers estimate condi-

tional probabilities to make causal inferences. This situation often arises when quantitative

scholars attempt to estimate partial effects.30 On many occasions the researcher estimates

a regression and interprets each of the regression coefficients as estimates of causal effects

holding all of the other variables in the model constant. For many in the late 19th and early

20th centuries, this was the goal of the use of regression in the social sciences. The regression

model was to give the social scientist the control over data which the physicist obtained via

precise formal theories and the biologist obtained via experiments. Unfortunately, if one’s

covariates are correlated with each other (as they almost always are), interpreting regres-

sion coefficients to be estimates of partial causal effects is simply asking too much from the

model. With correlated covariates, one variable (such as race) does not move independently

of other covariates (such as income, education and neighborhood). With such correlations,

it is difficult to posit interesting counterfactuals of which a single regression coefficient is a

good estimate.

A good example of these issues is offered by the literatures which developed in the after-

math of the 2000 Presidential election. A number of scholars try to estimate the relationship

between the race of a voter and uncounted ballots. Ballots are uncounted either because the

ballots contain no votes (undervotes) or overvotes (more than the legal number of votes).31

If one were able to estimate a regression model, for example, which showed that there was

no relationship between the race of a voter and her probability of casting uncounted bal-

lots when and only when one controlled for a long list of covariates, it would be unclear

30A partial effect is the effect a given antecedent has on the outcome variable net of all the other
antecedents—i.e., when all of the other variables “are held constant.”

31See Herron and Sekhon (2003; 2005) for a review of the literature and relevant empirical analysis.

29



what one has found. This uncertainty holds even if ecological and a host of other problems

are pushed aside because such a regression model may not allow one to answer the coun-

terfactual question of interest—i.e., “if a black voter became white, would this increase or

decrease her chance of casting an uncounted ballot?” What does it mean to change a voter

from black to white? Given the data, it is not plausible that changing a voter from black

to white would have no implications for the individual’s income, education or neighborhood

of residence. It is difficult to conceptualize a serious counterfactual for which this regression

result is relevant. Before any regression is estimated, we know that if we measure enough

variables well, the race variable itself in 2000 will be insignificant. But in a world where

being black is highly correlated with socioeconomic variables, it is not clear what we learn

about the causality of ballot problems from a showing that the race coefficient itself can be

made insignificant.

There are no general solutions or methods which ensure that the statistical quantities

we estimate provide useful information about the counterfactuals of interest. The solution,

which almost always relies on research design and statistical methods, depends on the precise

research question under consideration. But all too often the problem is ignored. All too

often the regression coefficient itself is considered to be an estimate of the partial causal

effect. Estimates of conditional means and probabilities are an important component of

establishing causal effects, but are not enough. One has to establish the relationship between

the counterfactuals of interest and the conditional probabilities one has managed to estimate.

A large number of other issues are also important when one is examining the quality

of the conditional probabilities one has estimated. A prominent example is the extent to

which one can combine a given collection of observations. The combining of observations

which are actually rather different is one of the standard objections to statistical analysis.

But the question of when and how one can legitimately combine observations is and has

long been one of the central research questions in statistics. In fact, the original purpose

of least squares was to give astronomers a way of combining and weighting their discrepant
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observations in order to obtain better estimates of the locations and motions of celestial

objects (Stigler 1986). Generally used methods, such as robust estimation, still require that

the model for combining observations is correct for most of the sample under consideration

so they do not get to the heart of the problem (e.g., Bartels 1996; Mebane and Sekhon 2004).

This is a subject that political scientists need to pay more attention to.

5 Discussion

This chapter has by no means offered a complete discussion of causality and all one has

to do in order to demonstrate a causal relationship. There is much more to this than just

conditional probabilities and even counterfactuals. For example, it is often important to

find the causal mechanism at work, in the sense of understanding the sequence of events

which lead from A to a. And I agree with qualitative researchers that case studies are

particularly helpful in learning about such mechanisms. Process tracing is often cited as

being particularly useful in this regard.32

The importance of searching for causal mechanisms is often overestimated by political

scientists and this sometimes leads to an underestimate of the importance of comparing

conditional probabilities. We do not need to have much or any knowledge about mechanisms

in order to know that a causal relationship exists. For example, by the use of rudimentary

experiments, aspirin has been known to help with pain since Felix Hoffmann synthesized a

stable form of acetylsalicylic acid in 1897. In fact, the bark and leaves of the willow tree (rich

in the substance called salicin) have been known to help alleviate pain at least since the time

of Hippocrates. But the causal mechanism by which aspirin alleviates pain was a mystery

until recently. Only in 1971 did John Vane discover aspirin’s biological mechanism of action.33

And even now, although we know how it crosses the blood-brain barrier, we have little idea

32Process tracing is the enterprise of using narrative and other qualitative methods to determine the
mechanisms by which a particular antecedent produces its effects—see George and McKeown (1985).

33He was awarded the 1982 Nobel Prize for Medicine for this discovery.

31



how the chemical changes in the brain due to aspirin get translated into the conscious

feeling of pain relief—after all, the mind-body problem has not been solved. But knowledge

of causal mechanisms is important and useful and no causal account can be considered

complete without a mechanism being demonstrated or at the very least hypothesized.

The search for causal mechanisms is probably especially useful when working with ob-

servational data. But it is still not necessary. In the case of the causal relationship between

smoking and cancer, human experiments were not possible yet most (but not all) neutral

researchers were convinced of the causal relationship well before the biological mechanisms

were known.34

In clinical medicine case studies continue to contribute valuable knowledge even though

large-N statistical research dominates. Although the coexistence is sometimes uneasy, as

noted by the rise of clinical outcomes research, it is nevertheless extremely fruitful and more

cooperative than the relationship in political science.35 One reason for this is that in clinical

medicine, researchers reporting cases more readily acknowledge that the statistical framework

helps to provide information about when and where cases are informative (Vandenbroucke

2001). Cases can be highly informative when our understanding of the phenomena of interest

is very poor, because then we can learn a great deal from a few observations. On the

other hand, when our understanding is generally very good, a few cases which combine a

set of circumstances that we believed could not exist or, more realistically, were believed

to be highly unlikely can alert us to overlooked phenomena. Some observations are more

important than others and there sometimes are “critical cases” (Eckstein 1975). This point

is not new to qualitative methodologists because there is an implicit (and all too rarely

34R. A. Fisher, one of the fathers of modern statistics and the experimental method, was a notable
exception. Without the manipulation offered by an experiment, he remained skeptical. He hypothesized
that genetic factors could cause people to both smoke and get cancer, and hence there need not be any
causal relationship between smoking and cancer (Fisher 1958a,b).

35Returning to the aspirin example, it is interesting to note that Lawrence Craven, a general practitioner,
noticed in 1948 that the 400 men he had prescribed aspirin to did not suffer any heart attacks. But it was
not until 1985 that the U.S. Food and Drug Administration approved the use of aspirin for the purposes of
reducing the risk of heart attack. And in 1988 the Physicians’ Health Study, a randomized, double-blind,
placebo-controlled trial of apparently healthy men, was stopped early because the effectiveness of aspirin
had finally been demonstrated (Steering Committee of the Physicians’ Health Study Research Group 1989).
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explicit) Bayesianism in their discussion of the relative importance of cases (George and

McKeown 1985; McKeown 1999). If one only has a few observations, it is more important

than otherwise to pay careful attention to the existing state of knowledge when selecting

cases and when deciding how informative they are. In general, as our understanding of an

issue improves, individual cases become less important.

The logical fallacy of cum hoc ergo propter hoc (“with this, therefore because of this”)

is committed by social scientists as a matter of course. Looking over a random sample of

quantitative articles in the APSR over the past 30 years, there appears to be no decline in

articles which commit this fallacy. The fallacy is now more often committed in a multivariate

sense with the use of multiple regression as opposed to correlations or crosstabs. But that

does not avoid the problem.

Historically, the matching literature, like much of statistics, has been limited by com-

putational power. What is possible with matching today is nothing like what was possible

in 1970 let alone during Mill’s time. Not so long ago estimating a logistic regression, the

common way today to estimate the propensity score, was prohibitive for all but the small-

est of datasets. Today, as we have seen, we can apply machine learning algorithms to the

matching problem. These technical innovations will continue, but history teaches us to be

cautious about what the technical advances will bring us. Without a greater focus on exper-

imental research and rigorous observational designs, it is unclear what substantive progress

is possible.

A Equal Percent Bias Reduction (EPBR)

Affinely invariant matching methods, such as Mahalanobis metric matching and propen-

sity score matching (if the propensity score is estimated by logistic regression), are equal

percent bias reducing if all of the covariates used have ellipsoidal distributions (Rubin and

Thomas 1992)—e.g., distributions such as the normal or t—or if the covariates are mixtures
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of proportional ellipsoidally symmetric (DMPES) distributions Rubin and Stuart (2005).36

To formally define EPBR, let Z be the expected value of X in the matched control group.

Then, as outlined in Rubin (1976a), a matching procedure is EPBR if

E(X | T = 1)− Z = γ {E(X | T = 1)− E(X | T = 0)}

for a scalar 0 ≤ γ ≤ 1. In other words, we say that a matching method is EPBR for X

when the percent reduction in the biases of each of the matching variables is the same. One

obtains the same percent reduction in bias for any linear function of X if and only if the

matching method is EPBR for X. Moreover, if a matching method is not EPBR for X,

the bias for some linear function of X is increased even if all univariate covariate means are

closer in the matched data than the unmatched (Rubin 1976a).

Even if the covariates have elliptic distributions, in finite samples they may not. Then

Mahalanobis distance may not be optimal because the matrix used to scale the distances,

the covariance matrix of X, can be improved upon.

The EPBR property itself is limited and in a given substantive problem it may not be

desirable. This can arise if it is known based on theory that one covariate has a large

nonlinear relationship with the outcome while another does not—e.g., Y = X4
1 + X2, where

X1 > 1. In such a case, reducing bias in X1 will be more important than X2.

36Note that DMPES defines a limited set of mixtures. In particular, countably infinite mixtures of el-
lipsoidal distributions where: (1) all inner products are proportional and (2) where the centers of each
constituent ellipsoidal distribution are such that all best linear discriminants between any two components
are also proportional.
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