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Abstract

Sekhon (2006; 2004a) and Diamond and Sekhon (2005) propose a matching method, called

Genetic Matching, which algorithmically maximizes the balance of covariates between treat-

ment and control observations via a genetic search algorithm (Sekhon and Mebane 1998).

The method is neutral as to what measures of balance one wishes to optimize. By default,

cumulative probability distribution functions of a variety of standardized statistics are used

as balance metrics and are optimized without limit. The statistics are not used to conduct

formal hypothesis tests, because no measure of balance is a monotonic function of bias in

the estimand of interest and because we wish to maximize balance. Descriptive measures of

discrepancy generally ignore key information related to bias which is captured by probability

distribution functions of standardized test statistics. For example, using several descriptive

metrics, one is unable reliably to recover the experimental benchmark in a testbed dataset

for matching estimators (Dehejia and Wahba 1999). And these metrics, unlike those based

on optimized distribution functions, perform poorly in a series of Monte Carlo sampling

experiments just as one would expect given their properties.



Matching has become an increasingly popular method of causal inference in many fields

including statistics (Rubin 2006; Rosenbaum 2002), medicine (Christakis and Iwashyna 2003;

Rubin 1997), economics (Abadie and Imbens 2006; Galiani, Gertler, and Schargrodsky 2005;

Dehejia and Wahba 2002, 1999), political science (Bowers and Hansen 2005; Herron and

Wand 2006; Imai 2005; Sekhon 2004b), sociology (Morgan and Harding 2006; Diprete and

Engelhardt 2004; Winship and Morgan 1999; Smith 1997) and even law (Rubin 2001). There

is, however, no consensus on how exactly matching ought to be done, how to measure the

success of the matching procedure, and whether or not matching estimators are sufficiently

robust to misspecification so as to be useful in practice (Arceneaux, Gerber, and Green 2006;

Heckman, Ichimura, Smith, and Todd 1998).

Sekhon (2006; 2004a) and Diamond and Sekhon (2005) propose a matching algorithm,

called Genetic Matching (GenMatch), which maximizes the balance of observed covariates

between treated and control groups. GenMatch is a generalization of propensity score and

Mahalanobis distance matching, and it has been used by a variety of researchers (e.g., Brady

and Hui 2006; Gilligan and Sergenti 2006; Gordon and Huber 2006; Herron and Wand 2006;

Morgan and Harding 2006; Lenz and Ladd 2006; Park 2006; Raessler and Rubin 2005). The

algorithm uses a genetic algorithm (Mebane and Sekhon 1998; Sekhon and Mebane 1998)

to optimize balance as much as possible given the data. The method is nonparametric and

does not depend on knowing or estimating the propensity score, but the method is improved

when a propensity score is incorporated. Diamond and Sekhon (2005) use this algorithm to

show that the long running debate between Dehejia and Wahba (2002; 1997; 1999; Dehejia

2005) and Smith and Todd (2005b,a, 2001) is largely a result of researchers using models

which do not produce good balance—even if some of the models get close by chance to the

experimental benchmark of interest. They show that Genetic Matching is able to quickly

find good balance and reliably recover the experimental benchmark.

The Genetic Matching algorithm is neutral as to what metric is used to evaluate balance.

The usual practice of using hypothesis tests to determine if observed covariates are balanced
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between matched and treated groups is seriously flawed in part because we are strictly

interested in the current sample and not in inferences about a population or superpopulation

when evaluating balance and because we wish to maximize balance without limit. However,

it is useful to optimize cumulative probability distribution functions of standardized test

statistics in the context of Genetic Matching as long as one does so without limit.1 Ho, Imai,

King, and Stuart (2007) go further and argue that instead of using standardized quantities

(such as t-statistics), researchers should use difference of means directly.2 Ho et al. (2007)

caution against the use of hypothesis tests because such tests lose power with reductions in

sample size, are sensitive to changes in the ratio between treated and control groups and can

be made to look better by increasing variance when the mean gap remains the same or even

when it is increased.

Although these concerns are important and all too often ignored by researchers, they do

not lead to the conclusion that one should optimize descriptive metrics instead of probability

distribution functions of standardized test statistics. The probability distributions associated

with standardized statistics do change with the sample size, and this is an issue which can

make it problematic to compare tests before and after matching. As Lee (2006) discusses,

we need to better distinguish between balance tests that are conducted before and after

matching. They simply serve different purposes. But this problem may be avoided simply

by making sure that the ratio of treated to control units and the sample size are held constant

across the matched datasets being compared as is the case with Genetic Matching.3

There are serious and open issues in the matching literature on the question of how to

think about matching when observations are dropped. For example, what is the estimand

after observations are dropped? The situation is clear enough when we restrict attention to

the average treatment effect for the treated units (ATT) instead of the average treatment

1Moreover, after GenMatch optimization, the p-values from balance tests cannot be interpreted as true
probabilities because of standard pre-test problems, but they remain useful measures of balance.

2Also see Imai, King, and Stuart (2006).
3GenMatch can be used in combination with a caliper but this raises a number of issues because different

observations will be dropped as the algorithm progresses. Hence, the estimand will change arbitrarily which
is an obvious problem.
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effect (ATE) or we restrict attention to white females and drop Asian males because we

cannot find adequate matches for them. But often we drop units based on the propensity

score so the population we are making an inference about becomes unclear—e.g., some Asian

males will be dropped but not others depending on the values of other covariates. In such

cases what we are estimating becomes unclear. The difficulty of the problem can be seen by

noting that if there are only two observations in a dataset which are perfectly matched—one

in treatment and one in control—an algorithm which is allowed to drop observations without

limit to maximize balance will drop all but these two.4 Since such a wide search is not well

posed, Genetic Matching does optimization after the analyst has fixed the data, chosen

the estimand and the ratio of treated to control—i.e., whether this means, for example,

estimating ATT with 1-to-1 matching with replacement or ATE with optimal matching

(Hansen 2004; Gu and Rosenbaum 1993; Rosenbaum 1991, 1989). After these decisions,

Genetic Matching can be used to optimize balance.

However, even with the sample size and ratio of treatment to control fixed, the cumulative

probability distribution function of statistics such as a t-test can become uninformative if a

matching algorithm simply increases variance and does not decrease the mean discrepancy.

Therefore it is important to either normalize the t-statistic by an unchanging quantity such

as the variance of the ATT observations and/or to also test to make sure that the variances

are made equal.

The central problem is that no single metric will be equally sensitive to all departures

of balance. The problem is more general than just that of inflated variances. Every metric

can be fooled by making some other function of balance worse—often much worse. For

example, if one only examines the simple difference of means, one can be similarly tricked.

An algorithm could decrease the mean gap between variables but markedly increase the gap

in some quantile of interest such as the maximum gap.

4One possibility is to explicitly write down a loss function which takes into account the tradeoff between
internal and external validity in a study due to limited overlap in the distribution of covariates (Crump,
Hotz, Imbens, and Mitnik 2006).
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The most important point to keep in mind is that we are matching not simply to increase

balance, but to reduce bias in a causal estimand we wish to estimate. In no case is this

bias simply a function of the mean gap between the confounders. Even in the simplest

case where the relationship between a single confounder the outcome is linear, the bias due

to imperfect matching is a function of both the covariance between the confounder and

treatment assignment and the variance of the confounder.

In the case where there are two confounders interesting tradeoffs emerge when deciding

what the best set of matches is. For example, the set of matches which result in higher mean

differences averaged over two different confounders may result in less bias even if the bias is

linear. This can occur if the unstandardized difference in means in the first confounder is

larger than the unstandardized difference in the second confounder, but the relative sizes of

the standardized differences are reversed. In this case, in order to minimize bias, one may be

better off being more concerned about the second variable than the first and hence using the

matches with higher average mean difference but smaller standardized average difference.

Thus, measures which depend on at least the first two moments are to be preferred.

And ideally we would like measures for all of the higher moments and measures which are

multidimensional. Useful approximations for the latter measures are not feasible to compute

unless one has vast amounts of data, but measures of the former are. By default GenMatch

maximizes the Kolmogorov-Smirnov (KS) test (along with the paired t-test) without limit,

but there are alternatives. The descriptive analogs to the KS test are functions of the em-

pirical quantile-quantile plots which compare the empirical distributions of a given covariate

between treatment and control groups—eQQ plots. And GenMatch is happy to optimize

these instead.

Functions of eQQ plots such as the mean differences in the eQQ plots have, however,

a serious drawback. These functions do not distinguish between departures from perfect

balance which are all skewed positive versus those which are all skewed negative versus those

which are half and half. Thus, for the same value of the mean eQQ discrepancy one could see
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a plot where the variable is more commonly larger for treatment than control or where errors

tend to go both ways and hence are more likely to cancel each other out. Descriptive metrics,

such as mean eQQ or max eQQ, are invariant to these considerations. In contrast, tests that

compare cumulative distributions such as the KS test are sensitive to these distributional

features. In this sense, descriptive measures are leaving information on the table which is

relevant for the bias in the estimand of interest. In other words, not all imbalances with the

same mean gap in eQQ plots are of equal concern.

An example is always helpful, and top panel in Figure 1 plots bias in the causal estimate in

the Dehejia and Wahba (1999) sample as a function of a hypothesis test metric. The balance

metric is the smallest p-value across a large number of tests conducted for all univariate

baseline covariates, as well as their first-order interactions and quadratic terms. This figure

shows the relationship between the fitness value (the lowest p-value obtained, after Genetic

Matching, from covariate-by-covariate paired t- and KS-tests across all covariates’ interaction

and quadratic terms) and the causal estimate. Each point represents an attempt at matching

resulting in a balance test and an estimate of causal effect with estimates distributed above

and below the target experimental result. Note that it is possible to get lucky and produce a

reliable result even when balance has not been attained, but there is no reason to pick these

matches when we don’t know the experimental benchmark. Reliable results are obtained only

at the highest fitness values and we know these fitness values not only when we don’t know

the experimental benchmark, but also when we don’t even know the estimand of interest.

The best fit has a p-value of 0.21 and it produces an estimate of $1777.762 which is very

close to the experimental benchmark of $1794.34.

The bottom panel in Figure 1 plots the same set of matches as the previous plot but where

the matches are sorted by the mean standardized eQQ across covariates. The eQQ metric

is scaled by a multiplication by −1 so that the plot is more comparable with the previous

one—i.e., the right most points have the best fit as measured by the metric. This metric

performs poorly. The best fit has an estimate of $923.54 while the experimental benchmark
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is $1794.34.5 Other functions of the eQQ plots perform even worse, including the maximum

average gap which is shown in the Monte Carlo sampling experiment discussed below.

Tables 1 and 2 present the results of two Monte Carlo sampling experiments which

reinforce the results presented in Figure 1. The first experimental setup is designed so

that the conditions of Rubin and Thomas (1992a,b) are satisfied. The baseline covariates

are multivariate normal, the mapping between the baseline covariates and the outcome is

linear, and all of the confounders are observed. Therefore, the Equal Percent Bias Reduction

(EPBR) property holds and both the propensity score and Mahalanobis distance matching

should perform relatively well. In the second experiment, conditions for EPBR are not

met. It is a difficult matching problem designed to be as similar as possible to the Dehejia

and Wahba sample. In particular, the baseline covariates do not have symmetric ellipsoidal

distributions. The covariates are taken to be exactly those in the Dehejia and Wahba (1999)

experimental sample of the LaLonde (1986) data. These covariates include discrete variables

as well as semi-continuous variables with significant skew. And the mapping between the

baseline covariates and the outcome is not linear. But all of the confounders are observed so

a matching method could work well. The details of the experimental designs are described

in the Appendix.

Table 1 presents results of the first Monte Carlo experiment. The first column of the

table presents the mean estimate of a given estimator and the second column the root mean

square error over 1000 Monte Carlo samples. The true estimate is $0 in this experiment.

The default (p-value based) GenMatch has, as expected, the lowest mean square error. The

“Raw” estimate refers to the naive unadjusted ATE which is simply, in a given sample,

the mean treatment outcome minus the mean control outcome. The raw bias is 60.4. The

bias of Mahalanobis distance matching is −8.63, for the joint propensity score Mahalanobis

distance estimator the bias is −5.96, and for propensity score matching the bias is −2.45.

5The set of matches in both figures was generated by randomly picking variables weights, by running
Genetic Matching with the p-value balance metric and then by running Genetic Matching with the mean
eQQ metric. Both plots contain the same points. They are only sorted differently. For details and software
see Sekhon (2006, 2004a) and http://sekhon.berkeley.edu/matching.
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Default GenMatch has a bias of −2.47, which is the second lowest, almost indistinguishable

from the bias of propensity score matching. Consistent with the results of Rosenbaum and

Rubin (1983), the estimator with the second lowest root means square error is the joint

propensity score Mahalanobis distance estimator. The results of Genetic Matching runs

with two different functions of eQQ are also presented. In the first case, GenMatch is asked

to minimize the mean of the average standardized eQQ discrepancy across covariates (eQQ

mean). In the second case, GenMatch is asked to minimize the maximum of the average

standardized eQQ discrepancy across covariates (eQQ max).

The last two columns of Table 1 present the ratios of bias and root mean square error of

a given estimator relative to GenMatch. Both of the eQQ GenMatch runs perform worse in

terms of both bias and RMSE than default GenMatch. The mean eQQ run has 3.21 times

the bias of default GenMatch and 1.25 times the RMSE. The max eQQ run has 3.51 times

the bias and 1.29 times the RMSE. Both of the eQQ runs also perform worse in terms of

bias than the propensity score model (more than three times the bias) and worse than the

pscore model when it is combined with Mahalanobis distance.

The two standard multivariate matching methods, Mahalanobis distance and the joint

propensity score plus Mahalanobis distance estimator, have significantly larger bias than

default GenMatch: Mahalanobis distance has 3.5 times the bias and the joint estimator

2.4 times the bias. Propensity score matching, however, only has .993 times the bias of

GenMatch. This is to be expected because as Abadie and Imbens (2006) prove, if one is

matching on more than one continuous variable the bias is not
√

n consistent. What is

surprising is how close the GenMatch bias is to that of propensity score matching.

The Mahalanobis distance mean square error is 1.75 times as large as that of GenMatch,

for the propensity score estimator it is 2.57 times as large, and for the joint estimator it is

1.49 times as large. Although the propensity score estimator has a slightly lower bias than

GenMatch (its bias is 0.993 times that of GenMatch), its mean square error is 2.57 times

as large. The GenMatch dominates all of the other multivariate matching methods both in
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terms of bias and MSE, and dominates propensity score matching in terms of MSE.

Table 2 presents the results for the second Monte Carlo experiment. In this experiment

the EPBR conditions do not hold and the propensity score is misspecified. Default GenMatch

now clearly dominates all other estimators both in terms of means square error and bias.

The other matching estimators have a bias which range from 10 times to 28 times as large

as that of default GenMatch. And the RMSE of the other matching estimators ranges from

1.22 times to 2.84 times as large as that of GenMatch. In this case, unlike the previous

Monte Carlo, the two eQQ GenMatch runs perform better than the standard methods, but

as in the first experiment, they perform worse than the standard GenMatch run both in

terms of bias (more than 10 times as large) and RMSE (about 1.2 to 1.27 times as large).

Default GenMatch is the only matching method which, across samples, produces a reliable

estimate of the true effect. The true causal estimate is $1000 and the average GenMatch

bias is only $25.6 (2.56%), with root mean square error of 455. The mean eQQ GenMatch

run has a bias of $261 (26.1%) and the max eQQ run has a bias of $294 (29.4%).

Conclusion

The literature on matching, particularly the debate over the LaLonde (1986) data, makes

clear the need to find algorithms which produce matched datasets with high levels of covariate

balance. The fact that so many talented researchers over several years failed to produce a

propensity score model which had a high degree of covariate balance is a cautionary tale.

In situations like these, machine learning can come to the rescue. There is little reason for

a human to try all of the multitude of models possible to achieve balance when a computer

can do this more systematically and much faster. Even talented and well trained researchers

need aid.

There is, however, no perfect measure of balance. No measure is equally sensitive to all

departures from balance so it is important to test balance in a variety of ways. The software
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package Matching (Sekhon 2006, 2004a) provides a large number of balance measures ranging

from t-tests to various functions of the raw and standardized eQQ plots. The best choice of

what metric to use is obviously dependent on the precise application. And the GenMatch()

function in Matching allows the user to use an arbitrary function of balance or to select from

a list of measures to optimize. GenMatch also allows the user to give more weight to some

covariates than others. In this way, the researcher is able to bring her substantive knowledge

to the problem. In general, however, I suspect that we do not know as often as we would

like what the relative importance of the possible confounders is. The previous outcome (if

observed) is often the most important covariate, but beyond that we are usually ignorant.

Finally, one may wish that balance tests should not make reference to speculative su-

perpopulations and should be consistent with the design that treatment assignment is the

only source of randomness. Hansen (2006) discusses permutation tests when matching is

done without replacement, and Lee (2006) discusses such tests for when matching is done

with replacement. These proposals are promising, and their performance should be carefully

evaluated.

A Design of Monte Carlos

Two different Monte Carlo experiments are presented. In the first, the experimental

conditions satisfy assumptions outlined in Rubin and Thomas (1992a). In this experiment,

all of the confounders are observed, they are distributed following a normal distribution, and

the mapping between X and Y is linear. The propensity score is reestimated in each Monte

Carlo sample for efficiency reasons (Rosenbaum and Rubin 1983).

In the second Monte Carlo experiment, the assumptions required for EPBR are not

satisfied. This experiment is a difficult case for matching. Some of the baseline variables are

discrete and others contain point masses and skewed distributions. The propensity score is

not correctly specified, and the mapping between X and Y is nonlinear. But all confounders
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are observed. One thousand Monte Carlo samples are performed for both experiments.

For each Monte Carlo sample in Experiment 1, there are 50 treated observations and 100

control observations. There are three baseline covariates all of which are normally distributed

with variance 1 and zero covariances. The baseline covariates for the treated observations

all have means equal to zero and the covariates for the control group all have means equal

to 0.2. The effect of treatment is zero and the outcome, Y , is generated as follows:

Y = Xβ + ε

where ε ∼ N(0, .5) and all of the β parameters are equal to 1.

For the second Monte Carlo sampling experiment, the distribution of covariates was

chosen to make the setting as realistic as possible, with variables taken from the Dehejia and

Wahba (1999) experimental sample of the LaLonde (1986) data. There are eight baseline

variables, none of which have ellipsoidal distributions. They are age, years of education, real

earnings in 1974, real earnings in 1975 and a series of indicator variables. The indicator

variables are Black, Hispanic, married and high school diploma. The two earnings variables

have large point masses at zero, have fat tails and are heavily skewed distributions. Given

this, the EPBR property is unlikely to hold. In this simulation we assume a homogeneous

treatment effect of $1000. The equation that determines outcomes Y (fictional earnings) is:

Y = 1000 T + .1 exp [.7 log(re74 + .01) + .7 log(re75 + 0.01)] + ε

where ε ∼ N(0, 10), re74 is real earnings in 1974, re75 is real earnings in 1975 and T is the

treatment indicator. The mapping from baseline covariates to Y is obviously nonlinear and

only two of the baseline variables are directly related to Y .

The true propensity score for each observation, πi, is defined by:

πi = logit−1
[
1 + .5µ̂ + .01 age2 − .3 educ2 − .01 log(re74 + .01)2 + .01 log(re75 + .01)2

]
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where µ̂ equals the linear predictor obtained by estimating a logistic regression model, where

the dependent variable is the actually observed treatment indicator in the Dehejia Wahba

(1999) experimental sample of the LaLonde (1986) data. The true propensity score in the

Monte Carlo experiment is a mix of the estimated propensity score in the Dehejia and Wahba

sample plus extra variables in Equation 1, because we want to ensure that the propensity

model estimated in the Monte Carlos samples would be badly misspecified. The linear

predictor is:

µ̂ = 1 + 1.428× 10−4age2 − 2.918× 10−3educ2 − .2275 black +−.8276 Hisp

+ .2071 married− .8232 nodegree− 1.236× 10−9re742 + 5.865× 10−10re752

− .04328 u74− .3804 u75

where u74 is an indicator variable for if real earnings in 1974 are zero and u75 is an indicator

variable for if real earnings in 1975 are zero.

In each Monte Carlo sample of this experiment, the propensity score is estimated using

logistic regression and the following incorrect functional form:

µ̂∗ = α + α1 age + α2 educ + α3 black + α4 Hisp

+ α5 married + α6 nodegree + α7 re74 + α8 re75

+ α9 u74 + α10 u75
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Figure 1: Hypothesis Test vs. eQQ Metric
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Experimental Benchmark

Each point represents a GenMatch evaluation. Estimates are accurate at high fitness values
for the hypothesis test metric (top panel). Both metrics are scaled so that the right most
points have the best fit.
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