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Summary. Randomized controlled trials (RCTs) can provide unbiased estimates

of sample average treatment effects. However, a common concern is that RCTs

may fail to provide unbiased estimates of population average treatment effects. We

derive assumptions sufficient for identifying population average treatment effects from

RCTs. We advocate relying on stronger identification assumptions than required

because the stronger assumptions allow for falsification tests. We offer new research

designs for estimating population effects that use non-randomized studies (NRSs) to

adjust the RCT data. This approach is considered in a cost-effectiveness analysis of

a clinical intervention, Pulmonary Artery Catheterization (PAC).
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1. Introduction

Randomized controlled trials (RCTs) can provide unbiased estimates of the relative
effectiveness of alternative interventions within the study sample. Much attention
has been given to improving the design and analysis of RCTs to maximise internal

validity. However, policy-makers require evidence on the relative effectiveness and
cost-effectiveness of interventions for target populations that usually differ to those
represented by RCT participants (Hoch et al., 2002; Mitra and Indurkhya, 2005;
Mojtabai and Zivin, 2003; Nixon and Thompson, 2005; Willan et al., 2004; Willan

and Briggs, 2006). A key concern is that estimates from RCTs and meta-analyses
may lack external validity (Allcott and Mullainathan, 2012; Deaton, 2009; Heckman
and Urzua, 2009; Heckman and Vytlacil, 2005; Hotz et al., 2005; Imbens, 2009). In

RCTs, treatment protocols and interventions differ to those administered routinely,



2 Hartman et al.

and trial participants—for example individuals, hospitals, or schools—are generally

unrepresentative of the target population (Gheorghe et al., 2013). These concerns
pervade RCTs across different areas of public policy and are key objections to using
RCTs for policy-making (Deaton, 2009). There is also growing interest in using

big observational data sources that contain detailed information about the target
population of interest (National Research Council, 2013). Our approach combines
the benefits of RCTs with those of large observational data sources, and it maintains

the advantages of both types of data. We establish sufficient conditions under which
RCTs can identify population treatment effects in combination with observational
data, and we develop methods to test if these conditions hold in a given application.

Previous research has proposed using non-randomized studies (NRSs) to assess
whether RCT-based estimates apply to a target population (Cole and Stuart, 2010;
Greenhouse et al., 2008; Kline and Tamer, 2011; Imai et al., 2008; Shadish et al.,

2002; Stuart et al., 2011). A common concern is that there may be many baseline
covariates, including continuous measures, which differ between the RCT and target
population, and modify the treatment effect. In these situations simple post-

stratification approaches for reweighting the treatment effects from the RCT to
the target population may not fully adjust for observed differences between the
settings (Stuart et al., 2011). There may also be unobserved differences between

the RCT and target population participants, providers, or settings. And the form
of treatment or control may vary. For example, the dose of a drug or the rigor of
a protocol may differ between the settings (Cole and Frangakis, 2009). Hence, the

RCT may provide biased estimates of the effectiveness and cost-effectiveness of the
routine delivery of the treatment in the target population.

Heckman et al. (1998) and Imai et al. (2008) introduced frameworks for

decomposing the biases that arise when estimating population treatment effects.
Stuart et al. (2011) proposed the use of propensity scores to assess the
generalizability of RCTs. We extend this literature by defining the assumptions that

are sufficient to identify population treatment effects from RCTs, and providing
accompanying placebo tests to assess whether the assumptions hold. These
tests can use observational studies to establish when treatment effects for the
target population can be inferred from a given RCT. Such tests have challenging

requirements: they have to follow directly from the identifying assumptions, be
sensitive to key design issues, and have sufficient power to test the assumptions–
not just for overall treatment effects, but also for subgroups of prime interest. The

formal derivations and the placebo tests allow for a number of research designs for
estimating population treatment effects. These research designs can be used with
a variety of different estimation techniques, and the best estimation approach for a

given problem will depend on the application in question.

We illustrate our approach in an evaluation of the effectiveness and cost-
effectiveness of Pulmonary Artery Catheterization (PAC), an invasive and

controversial cardiac monitoring device used in critical care. While the evidence
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from RCTs and meta-analyses suggests that PAC is not effective or cost-effective

(Harvey et al., 2005), concerns have been raised about the external validity of
these findings (Sakr et al., 2005). For this empirical application, we employ
an automated matching approach, Genetic Matching (GenMatch) (Diamond and

Sekhon, 2013; Sekhon and Grieve, 2012), to create matched strata within the RCT.
We use maximum entropy (MaxEnt) weighting to reweight the individual RCT
strata according to the observed characteristics in the target population.

The paper proceeds as follows. Section 2 introduces the motivating example

and the problem to be addressed. Section 3 derives the assumptions required for
identifying population average treatment effects. Section 4 describes the placebo
tests for checking the underlying assumptions, while section 5 outlines estimation

strategies. In Section 6, we illustrate the approach with the PAC case study.
Section 7 proposes an alternative design identified by the main theorem, Section 8
discusses related work, and Section 9 concludes.

2. Motivating Example

Pulmonary Artery Catheterization (PAC) is a cardiac monitoring device used in the

management of critically ill patients (Dalen, 2001; Finfer and Delaney, 2006). The
controversy over whether PAC should be used was fuelled by NRSs that found
PAC was associated with increased costs and mortality (Chittock et al., 2004;

Connors et al., 1996). These observational studies encouraged RCTs and subsequent
meta-analyses, all of which found no statistically significant difference in mortality
between the randomized groups (Harvey et al., 2005). The largest of these RCTs
was the UK publicly funded PAC-Man Study, which randomized individual patients

to either monitoring with a PAC, or no PAC monitoring (no PAC) (Harvey et al.,
2005). This RCT had a pragmatic design, with broad inclusion criteria and an
unrestrictive treatment protocol, which allowed clinicians to manage patients as they

would in routine clinical practice. The study randomized 1,014 subjects recruited
from 65 UK hospitals during 2000-2004, and reported that overall, PAC did not
have a significant effect on mortality (Harvey et al., 2005), but that there was

some heterogeneity in the effect of PAC according to patient subgroup (Harvey
et al., 2008). An accompanying CEA used mortality and resource use data directly
from the RCT, and reported that PAC was not cost-effective (Stevens et al., 2005).

However, despite the pragmatic nature of the RCT, commentators suggested that
the patients and centres differed from those where PAC was used in routine clinical
practice (Sakr et al., 2005). The major concern was that subgroups for which PAC

might be relatively effective (e.g. elective surgical patients), were underrepresented
in the RCT, and the unadjusted estimates of effectiveness and cost-effectiveness
from the RCT, might not apply to the target population.

To consider the costs and outcomes following PAC use in routine clinical practice,

a prospective NRS was undertaken using data from the Intensive Care National



4 Hartman et al.

Audit Research Centre (ICNARC) Case Mix Program (CMP) database. The

ICNARC CMP database contains information on case-mix, patient outcomes, and
resource use for about 1.5 million admissions to 250 critical care units in the United
Kingdom (Harrison et al., 2004). A total of 57 units from the CMP collected

additional prospective data on PAC use for consecutive admissions between May
2003 and December 2004.1 The NRS applied the same inclusion and exclusion
criteria for individual patients as the corresponding PAC-Man Study, which resulted

in a sample of 1,052 PAC cases and 31,447 potential controls. The overall control
group is not exchangeable with those who received PAC in practice (Sakr et al., 2005;
Sekhon and Grieve, 2012). Hence we only use information from the 1,052 patients

who received PAC in routine clinical practice, and from 1,013 RCT participants.

We assume throughout that the patients who received treatment in the NRS
represent the target population of interest, as these are the patients who receive
PAC in routine clinical practice. Therefore, as is common, the estimand of policy

interest is the population average treatment effect on the treated (PATT)—i.e. the
average treatment effect of PAC on those individuals in the target population who
received it. Information is available on baseline prognostic covariates common to

both the RCT and NRS settings, and includes those covariates anticipated to modify
the effect of PAC. For a center to participate in the PAC-Man Study required that
local clinicians were in equipoise about the potential benefits of the intervention

(Harvey et al., 2005), and the patients randomized had to meet the inclusion
criteria. The net effect is that the baseline characteristics of the RCT participants
differed somewhat from those who received PAC in routine clinical practice (Table

2). The baseline prognosis of the RCT patients was more severe, with a higher
mean age, a higher proportion of patients admitted following emergency surgery
and a higher proportion having mechanical ventilation. The RCT patients were
less likely to be admitted to teaching hospitals than those who received PAC in

the target population. For both studies the main outcome measure was hospital
mortality, which was higher in the RCT, than for the PAC patients in the NRS. The
studies reported similar hospital costs. The effect of PAC on costs and mortality

can be incorporated into a measure of cost-effectiveness such as the incremental net

1 Over this time period, 10 units recorded no PAC use and were excluded from this analysis,

as were units participating in the RCT (PAC-Man Study). The RCT data used, excludes

one participant for whom no endpoint data were available.
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monetary benefit (INB) (Willan et al., 2003; Willan and Lin, 2001).2

Table 1. Baseline characteristics and endpoints for the PAC-Man Study, and

for patients in the NRS who received PAC. Numbers are N (%) unless stated

otherwise

RCT NRS

No PAC PAC PAC

n=507 n=506 n=1052

Baseline Covariates

Admitted for elective surgery 32 (6.3) 32(6.3) 98 (9.3)

Admitted for emergency surgery 136 (26.8) 142 (28.1) 243 (23.1)

Admitted to teaching hospital 108 (21.3) 110 (21.7) 447 (42.5)

Mean (SD) Baseline probability of death 0.55 (0.23) 0.53 (0.24) 0.52 (0.26)

Mean (SD) Age 64.8 (13.0) 64.2 (14.3) 61.9 (15.8)

Female 204 (40.2) 219 (43.3) 410 (39.0)

Mechanical Ventilation 464 (91.5) 450 (88.9) 906 (86.2)

ICU size (beds)

5 or less 57 (11.2) 59 (11.7) 79 (7.5)

6 to 10 276 (54.4) 272 (53.8) 433 (41.2)

11 to 15 171 (33.7) 171 (33.8) 303 (28.8)

Endpoints

Deaths in Hospital 333 (65.9) 346 (68.4) 623 (59.3)

Mean Hospital Cost (£) 19,078 18,612 19,577

SD Hospital Cost (£) 28,949 23,751 24,378

This study is an example of where estimates of effectiveness and cost-effectiveness

from an RCT may not be directly externally valid for a target population, but there
is information from an NRS on the baseline characteristics and outcomes that can
inform the estimation of population treatment effects. The next section defines the

assumptions required for estimating PATT in this context.

2 Net monetary benefits can be calculated by weighting each life year using a quality

adjustment anchored on a scale from 0 (death) to 1 (perfect health), in order to report

quality-adjusted life years (QALYs) for each treatment. Then net monetary benefits for each

treatment group can be calculated by multiplying the QALY by an appropriate threshold

willingness to pay for a QALY gain (e.g. the threshold recommended by NICE in England

and Wales is £20,000 to £30,000 to gain a QALY), and subtracting the cost. Finally, the

INB of the new treatment can be estimated by contrasting the mean net monetary benefits

for each alternative.
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3. Identifying PATT from an RCT

For simplicity we consider those circumstances where data come from a single
RCT and a single NRS. It is assumed that the treatment subjects in the NRS

represent those in the target population of interest. This section outlines sufficient
assumptions for identification of PATT.

A random sample is taken from an infinite population. Let Yist represent

potential outcomes for a unit i assigned to study sample s and treatment t, where
s = 1 indicates membership of the RCT and s = 0 the target population. For
simplicity, we assume that in either setting a unit is assigned to treatment (t = 1)

or control (t = 0), and that, as in the motivating example, there is compliance with
treatment assignment and no missing outcome data.3 We define Si as a sample
indicator, taking on value s, and Ti as a treatment indicator taking on value t. For
subjects receiving the treatment, we define W T

i as a set of observable covariates

related to the sample selection mechanism for membership in the RCT versus the
target population. Similarly WCT

i is a set of observable covariates related to the
sample assignment for inclusion of controls in the RCT, versus the target population.

The sample average treatment effect (SATE) is defined as:

τSATE = E(Y11 − Y10|S = 1),

where the expectation is over the (random) units in S = 1 (the RCT sample).
Within the RCT, randomization ensures that the difference in the mean outcomes

between the treatment versus control units is an unbiased estimate of the SATE.
Other estimands include the average treatment effect on the treated in the sample

(SATT), and the average treatment effect on the controls in the sample (SATC):

τSAT∗ = E(Y11|S = 1, T = t)− E(Y10|S = 1, T = t),

where t = 0 for τSATC and t = 1 for τSATT . SATT estimates the average treatment
effect conditional on the distribution of potential outcomes under treatment, and
SATC estimates the average treatment effect conditional on the distribution of

potential outcomes under control. Randomization implies that the potential
outcomes in the treatment and control groups are exchangeable ((Y11, Y10) ⊥⊥ T |S =
1), and that the alternative estimands are asymptotically equivalent.4

The Population Average Treatment Effect (PATE) is defined as the effect of
treatment in the target population, the Population Average Treatment Effect on
Controls (PATC) as the treatment effect conditional on the distribution of potential

outcomes under control, and the Population Average Treatment Effect on Treated

3 When there is non-random attrition, causal effects even for the experimental sample

cannot be estimated without additional assumptions.
4 The treatment effects discussed here refer to infinite populations and samples, whereas

Imai et al. (2008) refers to treatment effects in infinite populations as super population

effects.
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(PATT) as the treatment effect conditional on the distribution of potential outcomes

under treatment:

τPATE = E(Y01 − Y00|S = 0)

τPATC = E(Y01 − Y00|S = 0, T = 0)

τPATT = E(Y01 − Y00|S = 0, T = 1). (1)

Our main quantity of interest is (1). Because treatment in the target population is
not randomly assigned, these three population estimands differ even asymptotically,

and they may be difficult to estimate without bias.
The following proof outlines the conditions under which population treatment

effects can be identified from RCT data. The following assumptions are sufficient

to derive the identifiable expression for τPATT in Theorem 1. Figure 1 represents
the assumptions, and demonstrates the result of Theorem 1.

Assumption 1: Consistency under Parallel Studies

Yi01 = Yi11 (2)

Yi00 = Yi10 (3)

For either the treatment or control group, assumption 1 restricts an individual’s
potential outcomes for the RCT and the target population. Intuitively, it is assumed

that if units in the target population were assigned their observed treatment
randomly, then their outcome would be the same as if they were assigned that
particular treatment in the RCT. This essentially ensures that any differences in

the treatment between the RCT and the NRS, for example, in a clinical protocol,
do not affect the outcome. Assumption 1 is similar to the assumption of consistency
under the parallel experiment design in Imai et al. (2013). Assumption 1 may be

violated if, for example, the clinical protocol for insertion of the PAC differs between
the RCT and the NRS. The pragmatic design of the PAC-Man Study helped ensure
that this assumption was met. Further examples of violation of the consistency

assumption are given in Cole and Frangakis (2009).

Assumption 2: Strong Ignorability of Sample Assignment for Treated

(Y01, Y11) ⊥⊥ S|(W T , T = 1), 0 < Pr(S = 1|W T , T = 1) < 1.

Assumption 2 states that the potential outcomes for treatment are independent of
sample assignment, for treated units with the same W T . Assumption 2 implies that

E(Ys1|S = 0, T = 1) = E01{E(Ys1|W T , S = 1, T = 1)}, (4)

for s = 0, 1. The expectation E01{·} is a weighted mean of the W T specific means,

E(Ys1|W T , S = 1, T = 1), with weights according to the distribution of W T in the
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Fig. 1. Schematic showing adjustment of sample effect to identify population effect.

Double arrows indicate exchangeability of potential outcomes, and dashed arrows indicate

adjustment of the covariate distribution.
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treated target population, Pr(W T |S = 0, T = 1). Essentially, on the right side of

Equation (4), the characteristics of the treated units in the RCT, W T , are adjusted
to match those of the treatment group in the target population. Figure 1 illustrates
this process with the single arrow from the RCT treated in the solid red circle, to

the adjusted group in the dashed red circle. The adjustment can be performed with
the weighting methods discussed in Section 5.

The right side of Equation (4) is the expectation in the adjusted RCT treated

group, depicted as the dashed red circle in Figure 1. The left side of Equation (4)
is the expectation in the treatment group in the target population, depicted as the
dashed red square in Figure 1. Thus by Equation (4) the adjusted treatment group

in the RCT replicates the Ys1 potential outcomes of the treatment group in the
target population. In Figure 1, the double arrow between the dashed red circle
and square represents the assumed exchangeability of potential outcomes between

settings for the treated units.

Assumption 3: Strong Ignorability of Sample Assignment for Controls

(Y00, Y10) ⊥⊥ S|(WCT , T = 1), 0 < Pr(S = 1|WCT , T = 1) < 1.

Assumption 3 states that the potential outcomes for control are independent of
sample assignment, for treated units with the same WCT .

Assumption 3 implies that

E(Ys0|S = 0, T = 1) = E01{E(Ys0|WCT , S = 1, T = 0)}, (5)

for s = 0, 1, since treatment assignment is random in the RCT, i.e. Ys0 ⊥⊥ T |(WCT ,

S = 1). The characteristics of the units in the control group in the RCT, WCT ,
are adjusted to match those of the treatment group in the target population. This
process is depicted in Figure 1 as the single arrow from the RCT control in the solid

blue circle to the adjusted group in the dashed blue circle.
The right side of Equation (5) is the expectation in the adjusted RCT control

group, which is depicted as the dashed blue circle in Figure 1. The left side of

Equation (5) is the expectation in the treated group in the target population, which
is depicted as the dashed red square in Figure 1. Thus it follows by Equation (5)
that the adjusted control group in the RCT replicates the expected Ys0 potential

outcomes of the treated group in the target population.
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Assumption 4: Stable Unit Treatment Value Assumption (SUTVA)

Y Li

ist = Y
Lj

ist ∀i 6= j,

where Lj is the treatment and sample assignment vector for unit j. This is a
stable unit treatment value assumption (SUTVA), which states that the potential

outcomes of unit i are constant regardless of the treatment or sample assignment
of any other unit.

Theorem 1 follows from Assumptions 1-4, with the proof given in Appendix A.

Theorem 1. Assuming consistency and SUTVA hold, if

E01{E(Ys1|W T , S = 0, T = 1)} − E01{E(Ys0|WCT , S = 0, T = 1)}
= E01{E(Ys1|W T , S = 1, T = 1)} − E01{E(Ys0|WCT , S = 1, T = 1)}, (6)

or sample assignment for treated units is strongly ignorable given W T , and sample
assignment for controls is strongly ignorable given WCT , then

τPATT = E01{E(Y |W T , S = 1, T = 1)} − E01{E(Y |WCT , S = 1, T = 0)},
where E01{E(·|W T , . . .)} denotes EW T |S=0,T=1{E(·|W T , . . .)}

and E01{E(·|WCT , . . .)} denotes EWCT |S=0,T=1{E(·|WCT , . . .)}.
From Theorem 1, it is possible to identify τPATT from the adjusted RCT data

alone. In Figure 1, the adjusted experimental controls and treated units are only
exchangeable if W T

i = WCT

i . As Figure 1 makes plain, in identifying τPATT , the
adjusted RCT controls are being used in place of the subset of population controls

who have the same distribution of observable characteristics as the treated units
in the target population. The adjusted RCT controls are not a substitute for all
population controls, since the controls and treated in the target population are not

assumed to be exchangeable.
As the randomized arms within the RCT are exchangeable, adjusting both groups

by the same observable characteristics will yield (asymptotically) exchangeable

groups. This implies that if W T
i = WCT

i , then the adjusted RCT treated and
controls are exchangeable with each other, and they can replace their counterparts
in the target population. To gain precision, matching or stratifying between the

treated and control units within the RCT can be undertaken, before adjustment
to the target population (Miratrix et al., 2013). Hence τPATT can be estimated
by reporting the treatment effect for each matched pair from the RCT, and then

adjusting these unit level treatment effects to the characteristics of those treated
in the target population. The corresponding estimate of the SATT is given by the
average of the unadjusted unit level effects from the RCT.

4. Placebo Tests for Checking Assumptions

Placebo tests are generally used to assess the plausibility of a model or identification

strategy when the treatment effect is known, from theory or design (Sekhon, 2009).
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This section describes placebo tests for checking the identifiability assumptions

of Theorem 1, regardless of the estimation strategy subsequently chosen. From
Section 3, if Equation (2) in assumption 1, assumptions 2, and 4 all hold, then
the Ys1 potential outcomes of the adjusted RCT treated group, and the target

population are exchangeable, i.e. Equation (11) holds. Since the potential outcomes
Y01 are observed in the treated group of the target population, then E(Y01|S =
0, T = 1) is equal to E(Y |S = 0, T = 1) and

E(Y |S = 0, T = 1)− E01{E(Y |W T , S = 1, T = 1)} = 0, (7)

from Equation (11) in Appendix A. Hence, if these assumptions hold, then the
expected outcomes will be the same for the treatment group in the RCT after
adjustment and the target population. A placebo test can be used to check whether

the average outcomes differ between the adjusted RCT treatment group and the
treatment group in the target population. If the placebo test detects a significant
difference in these outcomes, then either Equation (2) in assumption 1, assumption

2 or assumption 4 is violated.5 If Equation (3) in assumption 1, and assumptions 3
and 4 hold, then the Ys0 potential outcomes of the adjusted RCT treated group and
the target population are exchangeable, i.e. Equation (12) in Appendix A holds.

However, since Y00 is not observed in those treated in the target population, then
E(Y00|S = 0, T = 1) is not necessarily equal to E(Y |S = 0, T = 0). Therefore the
mean outcome in the adjusted RCT control group is not necessarily the same as

the mean outcome in the target treated population. This implies that a placebo
test cannot be used to check whether Equation (3) in assumption 1, assumption 3
or assumption 4 fails.

Placebo can be used to highlight the failure of several underlying assumptions,
but they cannot delineate the bias from the failure of each individual assumption.
Also, the tests cannot exclude the possibility that each assumption is violated but

the ensuing biases cancel one another out. Traditional, placebo tests have a null
hypothesis, that there is no difference in the average outcome between groups,
and the null hypothesis is rejected if the test statistic is significant. If the null

hypothesis is not rejected then a standard conclusion is that there is evidence to
support the identification strategy. However, the failure to reject the null hypothesis
may be because of insufficient power to detect a true difference between the groups,

particularly if treatment effects by subgroup are of interest, or if there are endpoints,
such as cost, that have a high variance. CEA typically have both these features.

To address this concern, Hartman and Hidalgo (2011) introduce equivalence

based placebo tests, with the null hypothesis that “the data are inconsistent with
a valid research design.” In this context, the null hypothesis can be stated as:
the adjusted endpoints for the treatment group in the RCT, are not equivalent to

5 If assumption 1 is violated and there is a constant difference between the potential

outcomes in the target population and the RCT, then the PATT can still be identified by

Theorem 1. See Section 7.1.
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those for the treatment group in the target population. This null hypothesis of

non-equivalence is only rejected if there is sufficient power.6 Hence, a low p-value
would offer support for the identification strategy. The advantage of the proposed
test is that it only supports the identification strategy when the test reports that

the two groups are equivalent, and when the test has sufficient power. Specifying
an alternative null hypothesis has implications for the test statistic and, just as in
a sample size calculation, requires that the threshold for a meaningful difference in

outcomes is pre-defined. Appendix B and Hartman and Hidalgo (2011) give further
details.

5. Estimating PATT

Estimation strategies for predicting population-level treatment effects from RCT
data fall into two broad classes. One class of strategies use weighting methods,

such as Inverse Propensity Score Weighting (IPSW) (Stuart et al., 2011) and
Maximum Entropy (MaxEnt) weighting (Kullback, 1997; Jaynes, 1957), which
rely on ancillary information, for example from a NRS, to reweight the RCT

data. The other prominent approach is to estimate the response surface using
the RCT data and extrapolate this response surface to the target population, and
includes methods such as Bayesian Additive Regression Trees (BART) (Chipman

et al., 2010), Classification and Regression Trees (CART) (Breiman, 2001; Liaw and
Wiener, 2002; Stuart et al., 2011), and linear regression. The result in Theorem 1
is agnostic to the estimation strategy; the adjustment of the RCT data by W T and

WC
T can either use weights from the first class of estimators, or predicted values

from a response surface model. Either way, in order to identify the population
estimand of interest, the estimation strategy must pass the proposed placebo tests.

While Theorem 1 does not require a specific estimation strategy, we do provide
a new research design that employs a weighting method. Our proposed strategy
firstly matches treated and control units within the RCT to create matched pairs
or strata (Diamond and Sekhon, 2013; Sekhon, 2011), from which we estimate the

SATT overall and by pre-specified subgroup. We then reweight the matched pairs
according to the characteristics of the target population to report PATT, both
overall and for subgroups.

5.1. Matching Treated and Control Units within the RCT

We create matched pairs within the RCT data, by matching controls to treated

units within the RCT using Genetic Matching (GenMatch) to maximise the balance
between the randomized groups (Diamond and Sekhon, 2013; Sekhon, 2011). We
recommend including in the matching algorithm, those covariates anticipated to

6 This alleviates the issues of confounding the notion of statistical equivalence with a tests

relationship to sample size discussed in Imai et al. (2008).
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influence not only the endpoints, but also the selection of patients into the RCT.

Covariates related to the selection into the RCT are part of the conditioning sets
W T and WC

T , and therefore care should be taken to ensure these covariates are
balanced.

5.2. Weighting Methods

We focus on an reweighting approach, MaxEnt, that can be applied when either

summary or individual data are available for the target population.7 MaxEnt,
goes back to at least Jaynes (1957); Kullback (1997); Ireland and Kullback (1968),
and has much in common with method of moments estimators (e.g. Hansen,

1982; Hellerstein and Imbens, 1999). In brief, this approach does not assume the
propensity score is correctly specified, nor does it make additional assumptions
about the distribution of weights. Under MaxEnt the cell weights, marginal

distributions, or other population moments for the conditioning covariates, W T ,
are used as constraints. MaxEnt ensures that the weights chosen for the matched
pairs sum to one, but simultaneously satisfy the MaxEnt constraints given by the

population characteristics. See Appendix D for more details on MaxEnt.

6. Empirical Example: PAC

We illustrate our new strategy for extrapolating from an RCT to a target population
using the PAC example. Here, we estimate PATT overall and for pre-specified

subgroups; patients’ surgical status (elective, emergency, non-surgical) and type of
admission hospital (teaching or not).

6.1. Matching and Weighting in the PAC Example

We used GenMatch to create matched pairs within the RCT data, by matching

a control unit to each treated unit. The matching algorithm included those
covariates anticipated to influence the selection of patients into the RCT and
the endpoints (See Appendix E Table E.1). The GenMatch loss function was
specified to require that balance, according to t-tests and KS tests, was not made

worse on those covariates anticipated to be of high prognostic importance after
matching. GenMatch matched 1-1 with replacement using a population size of
5,000. Matching was repeated within each subgroup to report SATT at the subgroup

level.8 Variance estimates were calculated conditional on the matched data (Imai
et al., 2008). The matching identified a control for each treated observation,
resulting in 507 matched pairs for the overall estimate. Each baseline covariate

7 IPSW is considered in Appendix H.
8 The aggregated subgroup estimates may not be equivalent to the overall estimate because

different matches are used for the overall and subgroup estimates.
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was well balanced after matching according to both t-tests and KS tests, as shown

in Figure F.1, Appendix F.

The SATT results, both overall and at subgroup level, were similar to the SATE

estimates from the RCT.

We use MaxEnt weighting to adjust the distribution of observable baseline
covariates in the matched RCT data to the distribution of the PAC patients in
the NRS. We constructed the weights for the covariates and interactions listed in
Appendix F (Table E.2). For each covariate used to construct the weights, the mean

for the PAC patients after reweighting was balanced with the observed means for
the PAC patients in the NRS. The t-tests for difference in means all have a p-value
of 1.

We then apply these weights to adjust the individual matched pairs from the

RCT according to the observed characteristics of the PAC patients in the NRS. To
recognize the uncertainty in the estimation of the weights, standard errors for both
SATT and PATT were estimated using subsampling (Politis and Romano, 1994).

Abadie and Imbens (2008) show that the bootstrap is not valid for estimating the
standard error of a matching estimator, but note that subsampling (Politis and
Romano, 1994) is valid. We used the algorithm described in Bickel and Sakov

(2008) to select the subsampling size, m, and found that the optimal subsample
was the sample size, n, in the RCT. We used 1000 bootstrap replicates.9

MaxEnt provided weights that were reasonably stable (see Appendix G.1), with
a mean weight of 1 and a maxima of 8; no individual stratum was given an extreme
weight.

6.2. Results of the Placebo Tests

We now report placebo tests that test the underlying assumptions for identifying
PATT by comparing the mean endpoints for the PAC patients in the NRS with

the adjusted means for the PAC patients in the RCT. The results are reported in
Figure 6.2, for all three endpoints: survival rates (black), cost (red), and INB (blue).
We present the equivalence based placebo test p-values for the overall estimate,

and each subgroup, and allow for multiple comparisons, by presenting p-values
with a false discovery rate correction (FDR) using the Benjamini-Hochberg method
(Benjamini and Hochberg, 1995). Following MaxEnt, for the overall stratum all the

placebo tests are passed; mean differences between the settings are small, and there
is sufficient power to assess whether such differences are statistically significant.

9 One of the arguments against using the bootstrap for matching estimators is that

individual matches can be no better than in the full sample, and typically are worse.

However, in the RCT, where the true propensity of each individual to be assigned to

treatment is constant, there are many potential matches for each unit. Therefore, in each

bootstrap sample, the probability of a close match for each unit is high. Therefore, it may

not be surprising then that the Bickel and Sakov (2008) algorithm selects m = n.
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Stratum PowerNaive p−value FDR p−value

Placebo Test P−Values

Non−Teaching

Hospital 0.85
−3917net benefit
−1635cost
−0.03survival

Teaching

Hospital 0.27
5765net benefit
3934cost
−0.04survival

Non−Surgical 0.83
2566net benefit
747cost
−0.04survival

Emergency

Surgery 0.28
−1821net benefit
2226cost
−0.07survival

Elective

Surgery 0.081
−11917net benefit
−3069cost
0.08survival

Overall 0.96
201net benefit
733cost
−0.03survival

Outcome

Difference

Obs − Adj

Fig. 2. MaxEnt Placebo Tests

Results of the equivalence placebo tests comparing the mean outcome of NRS
treated to the reweighed mean of the RCT treated. The column labelled

“Difference” presents the difference between the observed outcomes for the PAC
group in the NRS and the PAC group in the RCT after reweighting. The p-values
presented are before (squares) and after (triangles) FDR adjustment. The column
labelled “Power” presents the power of the equivalence t-test for each stratum.
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For some subgroups (teaching hospitals, elective and emergency surgery) there

is insufficient power to detect differences between the settings, and the placebo
test fails; for other subgroups (non-surgical and non-teaching hospital), the mean
differences are small after reweighting, and as there is also sufficient power, the

placebo tests are passed.

Details on applying IPSW to reweight RCT data to the target population and

for the PAC example are given in Appendix H.

Fig. 3. Population Treatment Effects on Hospital Survival Rates
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6.3. Population Estimates in the PAC Example

We report SATT estimated from the matched RCT data, and PATT after using

the MaxEnt weights to adjust the SATT estimates. The 95% confidence intervals
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Fig. 4. Population Treatment Effects on Costs (GBP £)
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(CIs) are obtaining using subsampling (Figures 3–5). For the overall group, the
PATT and SATT estimates are similar for each endpoint. For the non-teaching

hospital subgroup, which passed the placebo tests, the positive point estimate
for PATT suggested a somewhat more beneficial effect for PAC on survival, than
the corresponding SATT. The accompanying cost-effectiveness estimates were a
negative INB for the SATT, but for the PATT, the estimated INB was positive.

This finding suggests that for non-teaching hospitals in the target population, PAC
was relatively cost-effective. However, the CIs for each estimate overlapped zero,
and in general, the CIs for the PATT estimates were wider than those for the

corresponding SATT estimates.
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Fig. 5. Population Treatment Effects on Incremental Net Monetary Benefits
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Incremental Net Monetary Benefits calculated by valuing each

quality-adjusted life year (QALY) gain at a £20,000 per QALY threshold

6.4. Response Surface Models

An alternative estimation strategy is to use response surface models to estimate

covariate-endpoint relationships in the RCT, and use these estimates to predict
population treatment effects in the target population. For example, in the case
of OLS regression, the response surface can be estimated from the RCT data, the

βs held fixed, and the population treatment effects predicted from the covariate
distribution of the NRS treated. This approach may achieve efficiency gains
relative to weighting approaches, especially if not all the covariates included in

the adjustment are predictive of potential outcomes.

The proposed placebo tests can be used following the response surface approach,

by comparing the average outcomes predicted by the model with the average of the
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observed outcomes for the treated group. Again given sufficient power, a failure to

find equivalence between the predicted and observed outcomes indicates a failure of
at least one assumption underlying Theorem 1 and bias in the estimated population
treatment effects.

We implement response surface modeling with a statistical machine learning
algorithm for classification that uses a non-parametric Bayesian regression

approach–Bayesian Additive Regression Trees (BART) (Chipman et al., 2010).
BART is a “sum-of-trees” model where each tree is constrained by a regularization
prior to be a weak learner. It is a nonparametric method that uses dimensionally

adaptive random basis elements. The flexibility of BART confers potential
advantages in that it does not require the analyst to specify particular parametric
relationships between the covariates, the sample assignment, or the endpoints, and
it can incorporate a large number of predictors.

We apply BART in the PAC example, by estimating a response surface model on
the patients randomized to receive PAC. We estimate a model for the relationship

between the baseline characteristics and each endpoint (mortality, cost and net
monetary benefit). We then predict the outcomes the target population would have
had, if they had been included in the RCT. We predict these outcomes by combining

the coefficients from the response models, with the baseline characteristics of each
of the PAC patients in the NRS. The equivalence based placebo tests were then
applied by contrasting the means of the predicted versus the observed outcomes.

As can be seen in Figure I.5 in Appendix I, this response surface modeling
approach provided estimates that did not pass the requisite placebo tests for

estimating the overall treatment effects, and so in this example, this approach was
not applied to the estimation of population treatment effects.

7. Alternative Designs Identified under Theorem 1

7.1. Using the Population Treated

A main assumption in the derivation of Theorem 1 is that selection on observables
assumptions are sufficient to recognize the selection of the RCT participants.

However, if a placebo test rejects the null hypothesis given by Equation (7) then
Equation (2) in assumption 1, assumption 2 or assumption 4 is violated. In such a
case the results of Theorem 1 are no longer valid. However, if assumption 4 is not
violated and if assumption 3 and Equation (3) in assumption 1 are valid, PATT can

still be identified by

τPATT = E(Y |S = 0, T = 1)− E01{E(Y |WCT , S = 1, T = 0)}, (8)

from (12) in Appendix A. This estimator makes direct use of the population treated,

and it is valid if there is a constant difference in the potential outcomes between
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the population and the RCT. One can see this by rewriting (8) as:

τPATTDID
= E01{E(Y |W T , S = 1, T = 1)− E(Y |W T , S = 1, T = 0)} (9)

−[E01{E(Y |W T , S = 1, T = 1)} − E(Y |S = 0, T = 1)], (10)

assumingW T = WCT . The first difference (9) is the adjusted experimental estimand

and is intuitively a measure of the adjusted average effect. The second difference
(10) is defined as the difference between the outcomes of the treatment groups in
the RCT and the NRS.

The major concern with this estimator is that there is no longer a placebo
test available to check if the identifying assumptions hold. Hence, while the
main approach proposed makes a somewhat stronger identifying assumption, a key

advantage is that this design allows the implications of the assumptions to be tested.

8. Other Related Literature

Heckman and Vytlacil (2005) show that all of the estimands we consider (e.g.,

PATE, PATT, PATC) are weighted averages of Marginal Treatment Effects
(MTEs). The MTE is the treatment effect for a fixed value of the observed
covariates for units who are equally indifferent between treatment and control.

The indifference is conceptualized as an unobserved random variable that measures
utility. Heckman et al. (2006) show that if, conditional on observed covariates,
selection into treatment is a function of the gain from treatment (i.e., there is

essential heterogeneity), the usual estimators do not in general estimate a policy
relevant estimand. This is why the MTE conditions on unobserved utility. In
our case, essential heterogeneity cannot occur in the RCT because there is full

compliance, but the issue can arrise between selection into the RCT versus the
NRS. If there is essential heterogeneity in that selection process, it would violate
Assumptions 2 and 3, and the placebo tests we offer would be sensitive to this

problem if it were present. In short, our approach is for the case where the MTE is
just a function of observed covariates, and we offer specification tests to help assess
if this indeed is the case.

Hotz et al. (2005) examine how the efficacy of worker training programs differ
from one location to another. They offer a formalization that is similar to
ours, but there are key differences because of the setup they examine: they

formalize the comparison of two randomized trials undertaken in different locations.
The setup allows the treatments to differ between the two locations, but by
design, the control conditions are assumed the same. To evaluate whether
there is unconfoundedness across locations, they conduct placebo tests that

contrast outcomes for controls across settings. They then conduct a placebo test
contrasting endpoints for treatment versus treatment to assess whether treatment
was homogenous (conditional on passing the control-control placebo). This

interpretation of the placebos and the setup pertains to the setting with RCTs
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undertaken in different locations. Our theorem, placebo tests, and estimators differ

because we have a RCT and observational data on the target population.

Allcott (2014, 2011), and Allcott and Mullainathan (2012) find that treatment

effects vary greatly across the different experimental locations they consider, and
that this variance cannot be explained by observed variables. Therefore, the external
validity of the experimental estimate from one location to another is limited. Allcott

(2011) show that in their setting non-experimental estimates have poor external
validity, and that is worse than when non-experimental effects are predicted using
experimental results from another location. This is consistent with our setup where

we reweight the experimental estimand, and we do not resort to the observational
estimator which is available to us.

While the main population estimand that we consider in this paper is PATT,
policy-makers may also be interested in PATC or PATE. In Appendix C we outline
identification strategies for these alternative population estimands of interest, and

we link to previous work by Stuart et al. (2011) for estimating PATE.

9. Discussion

This paper derives conditions under which treatment effects can be identified from
RCTs for the target population of policy relevance. We provide placebo tests,

which follow directly from the conceptual framework, that can assess whether the
requisite assumptions are satisfied. These placebo tests contrast the reweighted
RCT endpoints with those of the target population provided, for example, by a NRS.

The general framework is illustrated with estimation strategies that reweight the
matched RCT data, but we could also exploit alternative estimation strategies such
as double-robust estimators. Whichever estimation strategy is taken, the placebo

tests presented can assess whether or not the assumptions required for identification
are met. The paper builds on previous approaches for considering external validity
(Heckman and Vytlacil, 2005; Hotz et al., 2005; Imai et al., 2008; Stuart et al.,

2011), by defining the assumptions required for estimating population treatment
effects, and providing a general strategy for assessing their plausibility.

We illustrate the framework for estimating population treatment effects in a
context where the treatment, in this case a medical device, has been defused to
the target population without adequate evaluation, and the parameter of interest

is the PATT. The framework can be applied to other situations: for example, in
evaluations of new pharmaceuticals, where the only individuals who receive the
treatment are those included in the phase III RCT. Then, the target population
is defined by those who would meet the criteria for treatment in routine practice

but receive usual care, and the estimand of interest is the PATC. In these settings,
the proposed framework can assess the identification strategies with placebo tests
that compare the weighted outcomes from the RCT control group versus those

receiving usual care in the target population (Stuart et al., 2011). Failure of these
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placebo tests would indicate that either participants’ unobserved characteristics, or

“usual care,” differs between the RCT and target population settings. Hence the
underlying assumptions are violated leading to biased estimates of the effectiveness
and cost-effectiveness of treatment in the target population.

Our framework complements the move to RCTs with pragmatic designs which
require that the participants and treatments included represent those in the target
population (Tunis et al., 2003). As the case study illustrates, pragmatic RCTs

can help ensure that the treatments delivered in RCTs are similar to routine
practice, and that there is reasonable overlap in baseline characteristics between the
settings. The PAC-Man RCT had broad inclusion criteria, many prognostic baseline

covariates common to the RCT and NRS settings, good overlap in the distribution of
the baseline covariates between the settings, and the RCT used the same treatment
and usual care protocols as for routine practice. These design features were an

important reason why the placebo test findings following MaxEnt reweighting,
supported the underlying assumptions required for estimating the PATT, overall
and for some subgroups. For those subgroups, for example teaching hospitals

where the placebo test results showed the underlying assumptions were violated,
this may reflect unobserved differences between the RCT and target population.
RCTs generally apply restrictive exclusion criteria, or treat according to more rigid

treatment protocols than would be applied in routine practice (Rothwell, 2005).
Such study designs mean that assumptions pertaining to both the consistency of
treatment, and strong ignorability will be violated; the placebo test would indicate

the likely bias in the estimates of the population treatment effects.

The proposed approach encourages future studies to fully recognize the
uncertainty in estimating population treatment effects, which comprises not just

the random error in the sample estimates, the systematic differences between the
RCT and the target population (Greenland, 2005), but also the uncertainty in
estimating the requisite weights. It is anticipated that when the treatment effects

are estimated for the population rather than the sample, there will be increased
uncertainty. Future studies should anticipate the additional uncertainty at the
design stage when developing the sampling strategy.

The paper motivates the following areas for further investigation. First, research
is required to consider the proposed framework in evidence synthesis and meta-
analyses of individual participant data from several RCTs. Here, rather than

weighting the data from each setting according to their relative sample size or
variance, weights should partly reflect each study’s relative relevance, according for
example to elicited opinion (Turner et al., 2009). Our approach can be extended
to recognize systematic differences in the populations and the treatments in each

study versus those in the target population. Second, we illustrate an approach
for reweighting evidence from head-to-head RCTs, but the framework extends to
settings which require comparisons across several interventions where there is a

common comparator, as typically happens in network meta-analyses. In this setting,
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the placebo tests can assess whether the underlying assumptions for estimating

population treatment effects are met, by contrasting the reweighted endpoints for
the common comparator (e.g. usual care) from each RCT with those of the target
population. Lastly, the framework presented is for settings where there is full

compliance with the treatment. For settings with non-compliance, further research
is required to define and test the assumptions required to identify the complier-
average causal effect for the target population.
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A. Proof of Theorem 1

Proof. From (2) and (4)

E(Y01|S = 0, T = 1) = E(Y11|S = 0, T = 1)
= E01{E(Y11|W T , S = 1, T = 1)}
= E01{E(Y |W T , S = 1, T = 1)}.

(11)

From (3) and (5)

E(Y00|S = 0, T = 1) = E(Y10|S = 0, T = 1)
= E01{E(Y10|WCT , S = 1, T = 0)}
= E01{E(Y |WCT , S = 1, T = 0)}.

(12)

The result follows by substituting Eqs. (11) and (12) in the quantity of interest
τPATT in Equation (1). With strong ignorability of sample assignment, from (6),

E(Y01|S = 0, T = 1)− E(Y00|S = 0, T = 1)

= E01{E(Y11|W T , S = 0, T = 1)} − E01{E(Y10|WCT , S = 0, T = 1)}
= E01{E(Y11|W T , S = 1, T = 1)} − E01{E(Y10|WCT , S = 1, T = 1)},

and the result follows from randomization.

B. Equivalence Tests

Equivalence tests begin with the null hypothesis:

H0 :
µadj samp−µpop

σ ≥ ǫU or µadj samp−µpop

σ ≤ ǫL
versus

H1 : ǫL < µadj samp−µpop

σ < ǫU

where µadj samp is the true mean of the reweighted sample treated and µpop is
the true mean of the populated treated, and σ is the pooled standard deviation of
the two groups. We define ǫL = 0.2 and ǫU = 0.2, as discussed above. The test uses

the test statistic

T =

√
mn(N−2)/N (X̄adj samp−X̄pop)

{∑
m

i=1
(Xadj sampi−X̄adj samp)2+

∑
n

j=1
(Xpopj−X̄pop)2

}2

where X̄adj samp is the observed mean of the reweighted sample treated, X̄pop is
the observed mean of the population treated, standardized by the observed standard
deviation. m refers to the number of observations in the reweighted sample, and n

to the number of observations in the population treated, and N = m+ n. The test
rejects the null of non-equivalence if:

|T | < Cα;m,n(ǫ)
with

Cα;m,n(ǫ) = F−1(α; df1 = 1, df2 = N − 2, λ2
nc = mnǫ2/N)

1

2
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where Cα;m,n(ǫ) is the square root of the inverse F distribution with level

α, degrees of freedom 1, N − 2, and non-centrality parameter λ2
nc = mnǫ2/N .

One important aspect of equivalence testing is that it requires the definition of a
range over which observed differences are considered substantively inconsequential.

We follow the recommendations of Hartman and Hidalgo (2011), and define
equivalence as a mean difference between the reweighted sample treated and the
true population treated of no more than 0.2 standardized differences and use the

t-test for equivalence defined in Wellek (2010).

C. Identifiability of Alternative Causal Quantities

The main population treatment effect considered in this paper is PATT, however

there are numerous population treatment effects that policy makers might be
interested in. If PATC is of interest then assumptions 2 and 3 can be replaced
by

(Y01, Y11) ⊥⊥ S|(W T , T = 0) and (Y00, Y10) ⊥⊥ S|(WCT , T = 0), (13)

respectively. Additionally, if Equation (3) in assumption 1, (Y00, Y10) ⊥⊥ S|(WCT ,
T = 0) and assumption 4 hold then E(Y |S = 0, T = 0) = E00{E(Y |WCT , S = 1,

T = 0)}. Therefore the mean outcomes would be the same for the control group in
the target population and the adjusted RCT, adjusted such that WCT follows its
distribution in the target control group. A placebo test can then be used to check
the validity of the required assumptions. However, this is not necessary to apply

Theorem 1 because (13) is not assumed in the current analysis.

In circumstances where the estimand of interest is the PATE then the estimand of
interest is the effect in the entire target population, where τPATE = E(Y01−Y00|S =

0). In such a case, assumptions 1–4, as well as (Y01, Y11) ⊥⊥ S|(WCT , T = 0) and
(Y00, Y10) ⊥⊥ S|WCT , T = 0, are sufficient for identification. Assuming W T

i = WCT

i ,
these assumptions and randomization imply that Yst ⊥⊥ (S, T )|W T , which means

that the potential outcomes for units with the sameW T are exchangeable, regardless
of whether they are assigned to treatment or control and whether they are in the
target population or RCT. Under these assumptions and randomization, it can be

shown that

E(Yst|S = 0) = EWCT |S=0{E(Y |WCT , S = 1, T = t)} (14)

τPATE = EWCT |S=0{E(Y |WCT , S = 1, T = 1)− E(Y |WCT , S = 1, T = 0)}, (15)

for t = 0, 1. Equation 14 implies that the mean outcome in the target population is

the same as in the adjusted RCT T = t group, adjusted such that WCT follows its
distribution in the target population. Equation 15 implies that the results from an
adjusted RCT can be used to identify PATE for a target population. The analysis of

Stuart et al. (2011) makes the stronger assumptions required to justify Equations 14
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and 15. Stuart et al. (2011) verify the assumptions by confirming the validity of

Equation 14, for t = 0, which then justifies the generalizability of the RCT results,
from Equation 15. It is possible for Equation (14) to be violated and Equation (15)
to still hold. This occurs if treatment consistency is violated but the potential

outcomes in the target population and RCT differ by some constant.

The assumptions required for Equation 14 can be checked by a placebo test of
the mean outcome in the target population and the adjusted RCT T = t group, for
t = 0, 1. However, since the assumptions used in the analysis here are weaker and

do not imply Equation 14, such a test is not done.

D. Maximum Entropy Weighting

The principle of maximum entropy is defined as:

max
p

S(p) = −
n
∑

i=1

pi ln pi (16)

s.t.







∑n
i=1 pi = 1

∑n
i=1 pigr(xi) =

∑n
i=1 pigri = ar r = 1, . . . ,m

pi ≥ 0 i = 1, 2, . . . , n
(17)

where equation (16) maximises Shanon’s measure of entropy, which is a form of
probabilistic uncertainty. The first constraint in equation (17) is referred to as the
natural constraint, and it simply states that all the probabilities must sum to one.

The m moment constraints are referred to as the consistency constraints. Each
ar represents an r-th order moment, or characteristic moment, of the probability
distribution (i.e. gri = (xi−µ)r where µ is the distribution mean). The distribution
chosen for p is that most similar to the uniform that still satisfies the constraints.

Due to the fact that there arem+n equations andm+n unknowns, corresponding to
m Lagrange multipliers and n probabilities, it is not possible to derive an analytical
solution for pi and λr simultaneously using only the known moments. A solution

must be found using an iterative search algorithm (Mattos and Viega, 2004).

In this context this ensures that individuals in the treatment group in the
RCT who have identical values for all of the covariates used in the constraints are

given equal weights. Here, the matched pairs from the RCT are reweighted using
constraints from the target population as, for example represented by the NRS.
The consistency constraints are constructed using moments such as the covariate
means from a NRS. Typically this is done using covariate data contained in both

the NRS and the RCT, however information from several external sources (e.g.
disease registries) about the target population can also be incorporated into the
constraints. Once the consistency constraints have been created, a set of weights

that simultaneously satisfies the constraints while maximizing the entropy measure
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is calculated. PATT can then be reported by weighting the SATT for each of the

individual matched pairs.
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E. Covariates used in Matching and Reweighting with MaxEnt

Table E.1. Covariates used in GenMatch

GenMatch Covariates

Priority (balance enforced to be no worse than initial balance)

Age, baseline probability of death, elective surgery indicator,

emergency surgery indicator, size of ICU, teaching hospital

indicator, mechanical ventilator at admission, base excess

Additional Covariates used for Matching

physiology score, admission diagnosis, gender, past medical

history variables on cardiac, respiratory, liver, and immune

measures, heart rate and blood pressure physiology measures,

temperature measures, respiratory measures

Additional covariates used for Balance

admission diagnosis, blood gas rate, Pf rate, Ph, Creatinine,

Sodium, Urine output, white blood cell counts, Glasgow coma,

cardiac and respiratory measures of organ failure, indicator for

sedation or paralyzation, baseline PAC rate in unit, geographical

region, APACHE II probability of death, indicators for missing

values
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Table E.2. Covariates used in MaxEnt

MaxEnt Margins

age, elective surgery indicator, emergency surgery indicator,

teaching hospital indicator, gender, baseline probability of

death, mechanical ventilator at admission, chemical measure

of decline, past medical history variables on cardiac,

respiratory, liver, and immune measures, categorical variables

on blood pressure rates, categorical measures on temperature,

geographical region, categorical variables on age (0-56, 57-

66, 67+), categorical classification of diagnostic variable,

categorical classification of base excess, base excess categories

× age categories, unit size × teaching hospital indicator,

teaching hospital indicator × base excess categories, mechanical

ventilation × base excess categories, teaching hospital indicator

× mechanical ventilator at admission, unit size × mechanical

ventilator at admission, gender × teaching hospital, teaching

hospital × age categories, gender × age categories, emergency

surgery indicator × gender, elective surgery indicator × gender,

teaching hospital indicator × past medical history variables on

cardiac, respiratory, liver, and immune measures, age categories

× base excess × gender, gender × past medical history variables

on cardiac and respiratory measures, mechanical ventilation

at admission × pasty medical history variables on cardiac,

respiratory, and renal measures
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F. Covariate balance in the PAC-Man RCT before and after matching

Fig. F.1. Covariate balance in the PAC-Man RCT according to p-values from t-tests, before

matching (BM) and after matching (AM) with GenMatch
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G. Distribution of Maximum Entropy Weights

Fig. G.1. MaxEnt Weight Distribution
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H. Inverse Propensity Score Weighting

Where individual unit data are available as in the PAC example, IPSW can also
be used to reweight the RCT data. In this context the propensity score estimates

the predicted probability of each individual unit being in the RCT, conditional
on baseline characteristics observed in the RCT and the NRS. IPSW then gives
each individual in both the RCT and NRS settings a weight, calculated as the

inverse of the probability of being in the RCT according to baseline characteristics.
However, IPSW weights can be extreme leading to unstable results and estimated
treatment effects can be particularly sensitive to misspecification of the propensity
score (Porter et al., 2011; Kang and Schafer, 2007; Kish, 1992). In recognition

of the concern that the propensity score may be misspecified we used a machine
learning algorithm for classification, random forests (Breiman, 2001), implemented
in the randomForest package with the default parameters (Liaw and Wiener, 2002;

Stuart et al., 2011).
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We implemented the IPSW approach in the case study by estimating a propensity

score using the covariates listed in the Table H.1. We calculated the IPSW weights
separately for each subgroup to enforce interactions of variables with the subgroup
classifications. Figure H.3 reports the covariate balance for the PAC patients in the

NRS versus the RCT, after reweighting with IPSW.
We found that in our example the IPSWweights were stable (see Figure H.2), but

there were differences between the observed covariate means for the PAC patients

in the NRS versus those from the RCT after reweighting with IPSW.
After we applied the placebo tests following IPSW, we found there are still large

differences in hospital mortality between the PAC patients in the adjusted RCT

treated group and the NRS. Figure H.4 shows the equivalence based placebo results
for the IPSW method for all three outcomes of interest. The placebo tests to do not
consistently pass, we therefore do not consider IPSW for estimation of the PATT.

Table H.1. Covariates used in IPSW Estimation

Propensity Score Covariates

gender, age, categorical age variables, elective surgery indicator,

emergency surgery indicator, past medical history variables on

cardiac, respiratory, liver, and immune measures, categorical

diagnostic variable, chemical decline variable, base excess

categorical variables, heart rate categorical variables, blood

pressure categorical variables, temperature categorical variables,

blood gas rate categorical variables, Pf rate categorical variables,

Ph categorical variables, Creatinine categorical variables,

Sodium categorical variables, Urine output categorical variables,

white blood cell counts categorical variables, Glasgow coma

categorical variables, cardiac and respiratory measures of organ

failure, mechanical ventilation at admission, unit size categorical

variable, teaching hospital indicator
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Fig. H.2. IPSW Weight Distribution
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Fig. H.3. Balance on observable characteristics between the PAC patients in the NRS and

the RCT, before and after adjustment of the RCT data with IPSW
0
.0

0

0
.0

5

0
.1

0

1
.0

0

Mean
RCT

Mean
NRS

Mean RCT
After IPSW
Adjustment

P−valuesSubgroup

●

●

●

●

●

●

●

●

●

●

Elective
Surgery

0.06 0.09 0.07

Emergency
Surgery

0.28 0.23 0.24

Non−
Surgical

0.66 0.68 0.69

Teaching 0.22 0.43 0.28

Non−
teaching

0.78 0.57 0.72

IMProb 0.53 0.52 0.53

Age 64.19 61.86 63.44

Female 0.43 0.39 0.4

Ventilation 0.89 0.86 0.88

Unit size 2.24 2.66 2.27

● Before Adjustment After IPSW Adjustment



40 Hartman et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Stratum PowerNaive p−value FDR p−value

Placebo Test P−Values

Non−Teaching

Hospital 0.85
11560net benefit
−714cost
−0.08survival

Teaching

Hospital 0.27
17374net benefit
1588cost
−0.09survival

Non−Surgical 0.83
16785net benefit
238cost
−0.09survival

Emergency

Surgery 0.28
−2603net benefit
1827cost
−0.02survival

Elective

Surgery 0.081
24307net benefit
−5881cost
−0.02survival

Overall 0.96
13410net benefit
1202cost
−0.08survival

Outcome

Difference

Obs − Adj

Fig. H.4. IPSW Placebo Tests

Above are the results of the equivalence placebo tests comparing the mean outcome

of NRS treated to the reweighed mean of the RCT treated. The column labelled
“Difference” presents the difference between the observed outcomes for the PAC
group in the NRS and the PAC group in the RCT after reweighting. The column

labelled “Power” presents the power of the equivalence t-test for each stratum.



From SATE to PATT 41

I. Bayesian Additive Regression Trees: Placebo test results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Stratum PowerNaive p−value FDR p−value

Placebo Test P−Values

Male 0.97
−7688net benefit
−87cost
0.06survival

Female 0.94
−943net benefit
−5947cost
0.03survival

Non−Teaching

Hospital 0.98
−262net benefit
−2896cost
0.01survival

Teaching

Hospital 0.75
−13249net benefit
−2127cost
0.10survival

Non−Surgical 0.28
−21889net benefit
185cost
0.17survival

Emergency

Surgery 0.98
−6625net benefit
−4383cost
0.06survival

Elective

Surgery 0.92
−2183net benefit
−983cost
0.03survival

Overall 1.0
−4883net benefit
−2486cost
0.05survival

Outcome
Difference

Obs − Adj

Fig. I.5. BART Placebo Tests

Results of the equivalence placebo tests comparing the mean outcome of NRS

treated to the BART estimated population treated. The column labelled
“Difference” presents the difference between the observed outcomes for the PAC
group in the NRS and the PAC group in the BART estimated population treated.

The column labelled “Power” presents the power of the equivalence t-test for each
stratum.


