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Abstract

This paper presents Genetic Matching, a method of multivariate matching, that uses an evolu-

tionary search algorithm to determine the weight each covariate is given. Both propensity score

matching and matching based on Mahalanobis distance are limiting cases of this method. The

algorithm makes transparent certain issues that all matching methods must confront. We present

simulation studies that show that the algorithm improves covariate balance, and that it may reduce

bias if the selection on observables assumption holds. We then present a reanalysis of a number of

datasets in the LaLonde (1986) controversy.

JEL classification: C13, C14, H31

Keywords: Matching, Propensity Score, Selection on Observables, Genetic Optimization, Causal

Inference



1 Introduction

Matching has become an increasingly popular method in many fields, including statistics (Rosen-

baum 2002; Rubin 2006), economics (Abadie and Imbens 2006; Dehejia and Wahba 1999; Galiani,

Gertler, and Schargrodsky 2005), medicine (Christakis and Iwashyna 2003; Rubin 1997), political

science (Herron and Wand 2007; Imai 2005; Sekhon 2004), sociology (Diprete and Engelhardt

2004; Morgan and Harding 2006; Winship and Morgan 1999) and even law (Epstein, Ho, King,

and Segal 2005; Gordon and Huber 2007; Rubin 2001). There is, however, no consensus on how

exactly matching ought to be done, how to measure the success of the matching procedure, and

whether or not matching estimators are sufficiently robust to misspecification so as to be useful in

practice (Heckman, Ichimura, Smith, and Todd 1998).

Matching on a correctly specified propensity score will asymptotically balance the observed

covariates, and it will asymptotically remove the bias conditional on such covariates (Rosenbaum

and Rubin 1983). By covariate balance we mean that the treatment and control groups have the

same joint distribution of observed covariates. The correct propensity score model is generally

unknown, and if the model is misspecified, it can increase bias even if the selection on observables

assumption holds (Drake 1993).1 A misspecified propensity score model may increase the imbal-

ance of some observed variables post-matching, especially if the covariates have non-ellipsoidal

distributions (Rubin and Thomas 1992).

Since the propensity score is a balancing score, covariate imbalance after propensity score

matching is a concern. Rosenbaum and Rubin (1984) provide an algorithm for estimating a propen-

sity score that involves iteratively checking if matching on the estimated propensity score produces

balance. They recommend that the specification of the propensity score should be revised until co-

variate imbalance is minimized.

The importance of iteratively checking the specification of the propensity score model is not

controversial in the theoretical literature on matching. Because outcome data is not used in the

1What we, following the convention in the literature, call the “selection on observables” assumption is actually an
assumption that selection is based on observed covariates.
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propensity score, one may consider various models of treatment assignment without introducing

sequential testing problems, even if analysts estimate many candidate models and sequentially

learn from one specification to the next. This is sometimes considered one of the central benefits

of matching (Rubin 2008). The propensity score is an ancillary statistic for estimating the aver-

age treatment effect given the assumption that treatment assignment is ignorable conditional on

observed confounders (Hahn 1998).

The process of iteratively modifying the propensity score to maximize balance is challenging.

Applied researchers often fail to report the balance achieved by the propensity score model they

settle on. For example, we reviewed all articles in The Review of Economics and Statistics from

2000 to August 2010. In this period, 31 articles discussed matching, and 23 articles presented

empirical applications of matching. Of these 23 articles, only eleven provided any measure of

covariate balance. Four articles presented difference of means tests for some variables that were

included in the propensity score model. And only one article presented balance measures for

all of the variables that were matched on. Our review of three other leading economics journals

found even lower rates of reporting covariate balance.2 In these three journals, there were a total

of 24 empirical applications of matching, of which only four presented any balance measures at

all. These findings are similar to those found in other disciplines. In a review of the medical

literature, Austin (2008) found 47 studies that used propensity score matching but that only two

studies reported standardized measures of covariate balance post-matching.

Our method, Genetic Matching (GenMatch), eliminates the need to manually and iteratively

check the propensity score. GenMatch uses a search algorithm to iteratively check and improve

covariate balance, and it is a generalization of propensity score and Mahalanobis Distance (MD)

matching (Rosenbaum and Rubin 1985). It is a multivariate matching method that uses an evolu-

tionary search algorithm developed by Mebane and Sekhon (1998; Sekhon and Mebane 1998) to

maximize the balance of observed covariates across matched treated and control units.

In this paper we provide a general description of the method, and we evaluate its performance

2For the same time period, we reviewed articles published in the American Economic Review, Journal of Political
Economy, and Quarterly Journal of Economics.
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using two different simulation studies and an actual data example. In Section 2 we describe our

automated iterative algorithm after a brief background discussion. In Section 3 we present our two

simulation studies. The first simulation study was developed by other researchers to demonstrate

the effectiveness of machine learning algorithms for semi-parametric estimation of the propensity

score (Lee, Lessler, and Stuart 2010; Setoguchi, Schneeweiss, Brookhart, Glynn, and Cook 2008).

We use this study to benchmark GenMatch against two alternative methods proposed in the liter-

ature. In the second simulation, we evaluate the performance of GenMatch when the covariates

are distributed as they are in a well-known dataset, the Dehejia and Wahba (1999) sample of the

LaLonde (1986) dataset.

In Section 4 we reanalyze several datasets that have been explored in the controversy spawned

by LaLonde (1986): Dehejia and Wahba (1999, 2002); Dehejia (2005); Smith and Todd (2001,

2005a,b). We examine these datasets both because they are well-known and because they offer

an opportunity to see if our algorithm is able to improve on the covariate balance found in a

literature that has generated a number of propensity score models. We offer concluding comments

in Section 5.

2 Methods

2.1 Propensity Score Matching

In observational studies, variables that affect the response may be distributed differently across

treatment groups and so confound the treatment effect (Cochran and Rubin 1973). Matching as-

sumes selection on observables or, using the conditional independence notation of Dawid (1979),

T ?? U j X , where T denotes the treatment and X and U are observed and unobserved covariates,

respectively. This implies that confounding from both observed and unobserved variables can be

removed by achieving covariate balance or T ?? X .

Matching on the true propensity score adjusts for observed confounders. The propensity score,
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�.Xi/, is the conditional probability of assignment to treatment given the covariates:

�.Xi/ � Pr.Ti D 1 j Xi/ D E.Ti j Xi/: (1)

The key property of interest is that treatment assignment and the observed covariates are condi-

tionally independent given the true propensity score, that is

X ?? T j �.X/: (2)

Equation 2 is Theorem 1 in Rosenbaum and Rubin (1983).

The main implication of Equation 2 is that “if a subclass of units or a matched treatment-control

pair is homogeneous in �.X/, then the treated and control units in that subclass or matched pair

will have the same distribution of X” (Rosenbaum and Rubin 1983, 44). Matching on the true

propensity score results in the observed covariates (X ) being asymptotically balanced between

treatment and control groups.

The propensity score is a balancing score: conditioning on the true propensity score asymptot-

ically balances the observed covariates. This property leads to what has been called the propensity

score tautology (Ho, Imai, King, and Stuart 2007). Since the propensity score is a balancing

score, the estimate of the propensity score is consistent only if matching on this propensity score

asymptotically balances the observed covariates. This tautology can be used to judge the quality

of an estimated propensity score. If the distributions of observed confounders are not similar af-

ter matching on an estimated propensity score, the propensity score must be misspecified or the

sample size too small for the propensity score to remove the conditional bias.

Therefore, it is important to assess covariate balance in the matched sample and to modify the

propensity score model with the aim of balancing the covariates. Rosenbaum and Rubin (1984)

recommend an iterative approach for achieving covariate balance. After propensity score match-

ing, covariate balance is assessed and the propensity score is modified accordingly. The iteration

ends when acceptable balance is achieved, although it is generally desirable to maximize balance

4



without limit. This manual and iterative algorithm is outlined in Figure 1. This advice is echoed

by others, such as Austin (2008).

A crucial step in this iterative algorithm is evaluating balance. Researchers frequently do not

clearly state how they evaluated post-matching covariate balance, and there is no consensus in

the literature on how to best measure balance. Rosenbaum and Rubin (1984) recommend using

F-ratios to measure individual covariate balance but alternatives include likelihood ratios, standard-

ized mean differences, eQQ plots, and Kolmogorov-Smirnov (KS) test statistics (Austin 2009).3

Whatever the balance statistic, iterative methods are not only laborious, but there is also no guar-

antee that overall balance improves after refinement of the propensity score. Moreover, as we note

in the introduction, this iterative approach is often not followed by applied researchers.

2.2 Genetic Matching

2.2.1 Mahalanobis Distance

Before turning to GenMatch itself, it is useful to discuss Mahalanobis distance (MD) matching

because GenMatch is a generalization of this distance metric. Although MD is rarely used in

economics, its use is more common in other fields, such as statistics. MD is a scalar quantity which

measures the multivariate distance between individuals in different groups. The MD between the

X covariates for two units i and j is

MD.Xi ; Xj / D

q
.Xi � Xj /T S�1.Xi � Xj /;

where S is the sample covariance matrix of X and XT is the transpose of the matrix X . The matrix

X may contain not only the observed confounders but also terms that are functions of them (e.g.,

power functions, interactions).

Because MD does not perform well when covariates have non-ellipsoidal distributions, Rosen-

3The KS test statistic, the maximum discrepancy in the eQQ plot, is sensitive to imbalance across the empirical
distribution.

5



baum and Rubin (1983) suggested matching on the propensity score, �.X/ D P.T D 1 j X/

instead. However, due to sampling variation and non-exact matching, T ?? X j �.X/ may not

hold after matching on the propensity score. Rosenbaum and Rubin (1985), therefore, recommend

that in addition to propensity score matching, one should match on individual covariates by min-

imizing the MD of X to obtain balance on X . Hence, they argue that the propensity should be

included among the covariates X or, alternatively, one may first match on the propensity score and

then match based on MD within propensity score strata.

2.2.2 A More General Distance Metric

The Genetic Matching algorithm searches amongst a range of distance metrics to find the particular

measure that optimizes post-matching covariate balance. Each potential distance metric considered

corresponds to a particular assignment of weights W for all matching variables. The algorithm

weights each variable according to its relative importance for achieving the best overall balance.

As discussed below, one must decide how to measure covariate balance and specify a loss function.

GenMatch matches by minimizing a generalized version of Mahalanobis distance (GMD), which

has the additional weight parameter W . Formally

GMD.Xi ; Xj ; W / D

q
.Xi � Xj /T .S�1=2/T W S�1=2.Xi � Xj /; (3)

where W is a k � k positive definite weight matrix and S�1=2 is the Cholesky decomposition of

S , i.e., S D S�1=2.S�1=2/T . All elements of W are restricted to zero except those down the main

diagonal, which consists of k parameters that must be chosen.

One may match on the propensity score in addition to the covariates. Therefore, X in Equation

3 may be replaced with Z, where Z is a matrix consisting of both the propensity score, �.X/, and

the underlying covariates X .4 In this case, if optimal balance is achieved by simply matching on

4In practice, it may be preferable to match on the propensity score and the covariates after they have been made
orthogonal to it. This may be accomplished by regressing each covariate on �.X/. Moreover, if one is using a
propensity score estimated by logistic regression, it may be preferable to match not on the the predicted probabilities
but on the linear predictor, as the later avoids compression of propensity scores near zero and one.
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the propensity score, then the other variables will be given a zero weight and GenMatch will be

equivalent to propensity score matching.5 Alternatively, GenMatch may converge to giving zero

weight to the propensity score and a weight of one to every other variable in Z. This would be

equivalent to minimizing the MD. Usually, however, the algorithm will find that neither minimizing

the MD nor matching on the propensity score minimizes the loss function and will search for

improved metrics that optimize balance.

Generally, it is recommended that GenMatch be started with a propensity score if one is avail-

able. In all applications in this paper, we provide GenMatch with a fixed simple linear additive

propensity score—i.e., without any interactions or high-order terms.

2.2.3 An Iterative Algorithm

GenMatch automates the iterative process of checking and improving overall covariate balance

and guarantees asymptotic convergence to the optimal matched sample. GenMatch may or may

not decrease the bias in the conditional estimates. However, by construction the algorithm will im-

prove covariate balance, if possible, as measured by the particular loss function chosen to measure

balance.

The GenMatch algorithm minimizes any loss function specified by the user, but the choice

must be explicit. It is recommended that the loss function include individual balance measures

that are sensitive to many forms of imbalance, such as KS test statistics, and not simply difference

of means tests. In GenMatch, the default loss function requires the algorithm to minimize overall

imbalance by minimizing the largest individual discrepancy, based on p-values from KS-tests and

paired t -tests for all variables that are being matched on.6

The algorithm uses p-values so that results from different tests can be compared on the same

scale. As the sample size is fixed within the optimization, the general concern that p-values depend

on sample size does not apply (Imai, King, and Stuart 2008).

5Technically, the other variables will be given weights just large enough to ensure that the weight matrix is positive
definite.

6Using p-values may be preferable with the KS bootstrap test since the test statistic is not monotonically related to
the p-value when there are point masses in the empirical distribution (Abadie, 2002).
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GenMatch uses a genetic search algorithm to choose weights, W , which optimize the loss

function specified. The algorithm proposes batches of weights, W s, and moves towards the batch

of weights which maximize overall balance—i.e., minimize loss. Each batch is a generation and

is used iteratively to produce a subsequent generation with better candidate W s. The size of each

generation is the population size (e.g., 1000) and is constant for all generations. Increasing the

population size usually improves the overall balance achieved by GenMatch. The algorithm will

converge asymptotically in population size (Mebane and Sekhon 2011; Sekhon and Mebane 1998).

The GenMatch algorithm is summarized in Figure 2.

Each W corresponds to a different distance metric, as defined in Equation 3. For each genera-

tion, the sample is matched according to each metric, producing as many matched samples as the

population size. The loss function is evaluated for each matched sample, and the algorithm iden-

tifies the weights corresponding to the minimum loss. The generation of candidate trials evolves

towards those containing, on average, better W s and asymptotically converges towards the optimal

solution: the one which minimizes the loss function. Further computational details are provided in

Sekhon (2011).

The key decisions GenMatch requires the researcher to make are the same that must be made

when using any matching procedure: what variables to match on, how to measure post-matching

covariate balance, and, finally, how exactly to perform the matching.

2.2.4 Matching Methods

GenMatch, along with its generalized distance metric (Equation 3) and iterative algorithm (Fig-

ure 2), can be used with any arbitrary matching method. For example, it could be used to conduct

nearest-neighbor matching with or without replacement, with or without a caliper, or to conduct

optimal full matching (Hansen 2004; Hansen and Klopfer 2006; Rosenbaum 1991). Regardless

of the precise matching method used, GenMatch will modify the distance metric in an attempt

to optimize post-matching covariate balance. The chosen estimand is also arbitrary. Just as the

precise model used to estimate the propensity score does not imply a particular matching method
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or estimand, GenMatch can be used with different matching methods and to estimate different

estimands.

In all of the analyses in this paper, we estimate the Average Treatment Effect on the Treated

(ATT) by one-to-one matching with replacement. Aside from the generalized distance metric

and the iterative algorithm, the matching method used is identical to that of Abadie and Imbens

(2006).7 We use matching with replacement because this procedure will result in the highest degree

of balance in the (observed) variables and the lowest conditional bias (Abadie and Imbens 2006).

Other matching procedures may, however, result in more efficient estimates.8

3 Monte Carlo Experiments

Two sets of Monte Carlo experiments are presented. The first set of simulations has been used

in the matching literature by a number of authors to evaluate the behavior of machine learning

algorithms for semi-parametric estimation of the propensity score. This set was developed by

Setoguchi et al. (2008) and subsequently used by Lee et al. (2010). The advantage of these sim-

ulations is that they were developed by other researchers for the purposes of judging the relative

merits of different matching methods.

We base the second set of simulations on the Dehejia and Wahba (1999) sample of the LaLonde

(1986) experimental dataset. This set of simulations is focused on determining how GenMatch

performs when the covariates are distributed as they are in this well-known dataset.

7Following Abadie and Imbens (2006), all ties are kept and averaged over. The common alternative of breaking
ties at random leads to underestimation of the variance of matched estimates.

8In results not shown, using other methods, such as matching without replacement, does not change the qualitative
conclusions discussed below about the relative advantages of GenMatch.
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3.1 Simulation Study 1: Comparing Machine Learning Algorithms

We use the same simulation setup as Lee et al. (2010).9 Lee et al. (2010) find that the best per-

formance is achieved by two different ensemble methods: random forests and boosted Classifica-

tion and Regression Trees (CART). We compare the performance of GenMatch to these ensemble

methods along with a simple linear fixed logistic regression model. There are many alternative

methods of estimating the propensity score semiparametrically (e.g., Lehrer and Kordas forthcom-

ing). We focus on these two ensemble methods because they have been used with these simulations

by other authors.

Classification and Regression Trees are widely used in machine learning and statistics (Breiman,

Friedman, Stone, and Olshen 1984). Trees methods estimate a function by recursively partitioning

the data, based on covariates, into regions. The sample mean of the outcome variable is equal to

the estimated function within a given region. The data are partitioned so as to make the resulting

regions as homogenous as possible. In this way, the prediction error is minimized. Tree methods

are insensitive to monotonic functions of the data, and interactions and non-linearities are naturally

approximated by the recursive splits.

CARTs may approximate smooth functions poorly, however, and they are prone to overfitting

the data. To overcome these difficulties, various ensemble approaches are used.10 In these ap-

proaches, instead of fitting one large tree, subsamples of the data are taken and multiple trees fit.

Each individual tree is set to be weak so as to prevent overfitting. But the trees are combined to

form a “committee” that is a powerful learner. In the case of random forests, the original dataset is

resampled with replacement, as in bootstrapping. And a tree is fit to each bootstrap sample using

only a random subset of the available covariates (Breiman 2001). All of the trees (across bootstrap

samples) are then combined to make a prediction for each observation. In the case of boosting, the

classification algorithm is repeatedly applied to modified versions of the data (Schapire 1990). In

9Lee et al. (2010) modify the Setoguchi et al. (2008) simulations in that the outcome variable is continuous instead
of binary, and they use the simulations to evaluate the performance of propensity score weighting.

10Hastie, Tibshirani, and Friedman (2009) provide a review of modern statistical learning and data mining algo-
rithms.
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each pass through the data, the observations are reweighed so as to increase the influence of ob-

servations that were previously poorly classified. The predictions from this sequence of classifiers

are then combined often by weighted majority voting.

These simulations consists of ten covariates (Xk, k D 1; : : : ; 10): four confounders associated

with both treatment and outcome, three treatment predictors, and three outcome predictors.11 Six

covariates (X1, X3, X5, X6, X8, X9) are binary, whereas four (X2, X4, X7, X10) are standard

normal. Treatment is binary, and the average probability of treatment assignment at the average

value of the covariates is � 0:5. There are seven different scenarios that differ in the degree of

linearity and additivity in the true propensity score model—i.e., the degree to which the propensity

score model includes non-linear (quadratic) terms and interactions. The seven scenarios have the

following properties:

A: additivity and linearity (mean effects only)

B: mild non-linearity (one quadratic term)

C: moderate non-linearity (three quadratic terms)

D: mild non-additivity (three two-way interaction terms)

E: mild non-additivity and non-linearity (three two-way interaction terms and one quadratic

term)

F: moderate non-additivity (ten two-way interaction terms)

G: moderate non-additivity and non-linearity (ten two-way interaction terms and three quadratic

terms)
11Note that the treatment predictors do not directly affect the outcome so they are instruments. In the simulations,

such predictors are included to make the adjustment task more difficult. In practice, instruments should not be included
in the propensity score when assuming selection on observed variables (nor in an OLS regression model if that is used).
If there exists any bias because of unobserved confounding and if the relationships between the variables are linear, the
inclusion of instruments in the propensity score (or OLS model) will increase asymptotic bias (Bhattacharya and Vogt
2007; Wooldridge 2009). In the non-parametric case, the direction of the bias is less straightforward, but increasing
asymptotic bias is possible (Pearl 2010). Of course, in practice if one has an instrument in an observational study, one
should use an instrumental variable estimator.
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The continuous outcome Y is always generated by a linear combination of treatment T and the

confounders such that Y D ˛kXk C 
T , where 
 D �0:4. The values of ˛ and further details of

both how the outcome is generated and how treatment is assigned in each scenario are provided in

Appendix A.

We report results for two different dataset sizes, n D 1000, and n D 5000.12 One thousand

simulated datasets were generated for each scenario. The random forest and boosted CART models

are implemented using the same software and parameters as Lee et al. (2010). The random forest

models are implemented using the randomForest package in R with the default parameters (Liaw

and Wiener 2002). The boosted regression trees are implemented using the twang package in

R (Ridgeway, McCaffrey, and Morral 2010). The parameters used are those recommended by

McCaffrey, Ridgeway, and Morral (2004).13 GenMatch is asked to optimize balance for all ten

observed covariates using its default parameters.

Table 1 presents the results. It displays the bias and the root mean squared error (RMSE) of

the estimates. Bias is reported as the absolute percentage difference from the true treatment effect

of �0:4. When the true propensity score is linear and additive in the covariates, scenario A, all

methods perform well. Since in scenario A the fixed logistic regression is correctly specified, it

has the smallest absolute bias and the second smallest RMSE of all estimators. In all scenarios

GenMatch has the smallest RMSE. GenMatch also has the smallest bias in all scenarios except for

the first, where the correctly specified propensity score model has less bias.

As the scenarios become more non-linear and non-additive, the fixed linear additive propensity

score performs worse. The random forests method performs well across the scenarios. Aside from

scenario A, it has the second lowest RMSE after GenMatch, and in scenario A it has the third

lowest RMSE. Boosted CART performs relatively poorly. When the sample size is 1000, it has

the highest RMSE in all seven scenarios, and it has the largest absolute bias in all scenarios except

12The results for these two samples sizes are consistent with the results for the other sample sizes that were tried
(n D 500, n D 10000, n D 20000).

13The parameters are 20,000 iterations and a shrinkage parameter of 0.0005. The shrinkage parameter reduces the
loss for any misclassification, and it reduces how quickly the weights in the boosting algorithm change over iterations.
A smaller shrinkage parameter results in a slower algorithm, but one that may have better out-of-sample performance
because of less over fitting (Bühlmann and Yu 2003; Friedman 2001).
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C, where the bias of logistic regression is worse. When n D 5000, although boosted CART still

performs worse than the other two adaptive methods, its performance improves the most with the

increase in sample size. With the larger sample size, boosted CART has lower RMSE than the

fixed logistic regression model in scenarios C, E, G, but it has higher RMSE in scenarios A, B,

D, F. Across scenarios, either boosted CART or fixed logistic regression has the highest RMSE.

All methods perform better with the additional data, although the relative performance between

methods changes little.

The absolute bias for GenMatch is never large. In the n D 1000 case, the largest percentage

bias for GenMatch is 2.39% and this occurs in scenario G. For n D 5000, the largest GenMatch

bias is 1.11% (scenario F). In the n D 1000 case, the largest absolute bias for random forest is

9.39% (scenario A), for boosted CART it is 25.9% (scenario D), and for logistic regression it is

16.8% (scenario G). For n D 5000 case, the largest absolute bias for random forest is 4.05%

(scenario A), for boosted CART it is 11.3% (scenario F), and for logistic regression it is 16.3%

(scenario G).

Figures 3 and 4 present balance statistics for the confounders in the n D 1000 simulations.14

For each scenario and method, a boxplot is provided that displays the distribution of the smallest

p-value in each of the 1000 matched datasets across t -tests and KS-tests. In all seven scenar-

ios, GenMatch has the best balance, even in scenario A where the logistic regression is correctly

specified. After GenMatch, either logistic regression or random forests provides the best balance

depending on the scenario. Although there is a relationship between the balance observed in the

covariates as shown in the figures and the bias estimates in Table 1, it is less than perfect. This

highlights the problem of choosing how to best measure covariate balance, which remains an open

research question.

14The balance figures for the n D 5000 simulations are similar.
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3.2 Simulation Study 2: LaLonde Data

In this simulation study, the distribution of covariates is based on the Dehejia and Wahba (1999)

experimental sample of the LaLonde (1986) data.15 This experiment offers a more difficult case for

matching than the previous simulation study. Some of the baseline variables are discrete and others

contain point masses and skewed distributions. None of the covariates, as they are based on real

data, have ellipsoidal distributions. The propensity score is not correctly specified, and the mapping

between X and Y is non-linear. The selection into treatment is more extreme than in the previous

simulations study. A greater proportion of the data has either a very high or very low probability

of receiving treatment. This feature was adopted to be consistent with the observational dataset

created by LaLonde. The sample is not large which makes the matching problem more difficult.

There are 185 treated and 260 control observations.

In this simulation we assume a homogeneous treatment effect of $1000. The equation that

determines outcomes Y (fictional earnings) is:

Y D 1000 T C :1 exp Œ:7 log.re74 C :01/ C :7 log.re75 C 0:01/� C �

where � � N.0; 10/, re74 is real earnings in 1974, re75 is real earnings in 1975 and T is the

treatment indicator. The mapping from baseline covariates to Y is obviously non-linear and only

two of the baseline variables are directly related to Y .

The true propensity score for each observation, �i , is defined by:

�i D logit�1
�
1 C :5 O� C :01 age2

� :3 educ2
� :01 log.re74 C :01/2 (4)

C:01 log.re75 C :01/2
�

where O� is the linear predictor obtained by estimating a logistic regression model and the dependent

variable is the observed treatment indicator in the Dehejia and Wahba (1999) experimental sample

15Adjusting the simulations so that they are based on either the entire LaLonde male sample or the early random-
ization sample of Smith and Todd (2005a) produces results similar to those presented here.
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of the LaLonde (1986) data. This propensity score is a mix of the estimated propensity score in the

Dehejia and Wahba sample plus extra variables in Equation 4, because we want to ensure that the

propensity model estimated in the Monte Carlo samples is badly misspecified. The linear predictor

is:

O� D 1 C 1:428 � 10�4age2
� 2:918 � 10�3educ2

� :2275 black C �:8276 Hisp

C :2071 married � :8232 nodegree � 1:236 � 10�9re742
C 5:865 � 10�10re752

� :04328 u74 � :3804 u75

where u74 is an indicator variable for real earnings in 1974 equal to zero and u75 is an indicator

variable for real earnings in 1975 equal to zero.

In each Monte Carlo sample of this experiment, the propensity score is estimated using logistic

regression and the following incorrect functional form:

O��
D ˛ C ˛1 age C ˛2 educ C ˛3 black C ˛4 Hisp

C ˛5 married C ˛6 nodegree C ˛7 re74 C ˛8 re75

C ˛9 u74 C ˛10 u75

Table 2 presents the results for this Monte Carlo experiment based on 1000 samples. As be-

fore, we compare GenMatch with random forest and boosted CART along with the misspecified

propensity score.

The raw unadjusted estimate (the sample mean of treated minus the sample mean of controls)

has a bias of 48.5% and a RMSE of 1611. Matching on the fixed logistic regression model in-

creases the absolute bias relative to not adjusting at all to 51.2% and it also increases the RMSE

to 1832. In contrast, GenMatch has a bias of 4.32% and a RMSE of 512, although it conditions

on the same observables. Estimating the propensity score with random forests produces a bias of

81.3% and a RMSE of 2223. Boosted CART has similar performance with a bias of 103.9% and a

RMSE of 2492.
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Of the methods considered, only GenMatch reduces the RMSE relative to the unadjusted esti-

mate. The bias of the other adjustment methods ranges from 11.9 times that of GenMatch for the

fixed logistic regression model to 24 times GenMatch for boosted CART. The fixed logistic regres-

sion specification has a RMSE of 3.58 times that of GenMatch while random forests has a RMSE

4.34 times that of GenMatch and boosted CART has a RMSE of 4.87 times that of GenMatch.

This simulation shows that matching methods may perform worse than not adjusting for covari-

ates even when the selection on observables assumption holds. As the sample size increases, the

behavior of all of these matching methods will improve relative to the unadjusted estimate since

the selection on observables assumption does hold. See, for example, the results of Simulation

Study 1 in the previous section.

4 Empirical Example: Job Training Experiment

Following LaLonde (1986), Dehejia and Wahba (1999; 2002; Dehejia 2005) (DW) and Smith

and Todd (2001, 2005a,b) (ST), we examine data from a randomized job training experiment, the

National Supported Work Demonstration Program (NSW), combined with observational survey

data. This dataset has been analyzed by DW, ST, and many others, and it has been widely dis-

tributed as a teaching tool for use with matching software.

LaLonde’s goal was to design a testbed for observational methods. He used the NSW exper-

imental data to establish benchmark estimates of average treatment effects. Then, to create an

observational setting, data from the experimental control group were replaced with data from the

Current Population Survey (CPS) or alternatively the Panel Study of Income Dynamics (PSID).

LaLonde’s goal was to determine which statistical methods, if any, were able to use the observa-

tional survey data to recover the results obtained from the randomized experiment.

We explore whether GenMatch is able to find matched datasets with good balance in the ob-

served covariates. We compare the balance found by GenMatch to that of the propensity score

models used in the literature to analyze these datasets.16

16We also used both the random forest and boosted CART algorithms to estimate propensity score models in these
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4.1 Data

The NSW was a job training program implemented in the mid-1970s to provide work experi-

ence for 6–18 months to individuals facing economic and social disadvantages. Those randomly

selected to join the program participated in various types of work. Information on pre-intervention

variables (pre-intervention earnings, as well as education, age, ethnicity, and marital status) was

obtained from initial surveys and Social Security Administration records. In the LaLonde data

sample of NSW, baseline data is observed in 1975 and earlier, and the outcome of interest is real

earnings in 1978.

There are eight observed possible confounders: age, years of education, real earnings in 1975,

a series of variables indicating if the person has a high school degree, is black, is married, or is

Hispanic, and, for a subset of the data, real earnings in 1974.17 The four dichotomous variables

respectively indicate whether the individual is black, Hispanic, married, or a high school graduate.

We analyze three different NSW datasets: the LaLonde, DW, and early randomization samples.

Following DW, our LaLonde sample consists of only male participants in the original LaLonde

analysis. This experimental sample is composed of 297 treated observations and 425 control ob-

servations.

Dehejia and Wahba (1999) created the DW sample from the LaLonde sample. DW argued

that it was necessary to control for more than one year of pre-intervention earnings in order to

make the selection on observables assumption plausible because of Ashenfelter’s dip (Ashenfelter

1978). DW limited themselves to a particular subset of LaLonde’s NSW data for which they

claimed to either measure 1974 earnings or assumed zero earnings. They used individuals who

were randomized before April 1976 and individuals who were randomized later but were known

to be non-employed prior to randomization. The DW subset contains 185 treated and 260 control

observations.

datasets, but neither algorithm produced matched datasets with better covariate balance than the best propensity score
models proposed in the literature.

17The variable that DW call “real earnings in 1974” actually consists of real earnings in months 13–24 prior to the
month of randomization. For some people, these months overlap with calendar year 1974. For people randomized late
in the experiment, these months actually largely overlap with 1975. Please see Smith and Todd (2005a) for details.
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The early random assignment (“Early RA”) sample was created by Smith and Todd (2005a).

Like the DW sample, the Early RA sample is a subset of the LaLonde sample for which two years

of prior earnings are available. The Early RA sample excludes people in the LaLonde data who

were randomized after April 1976. This sample was created because ST found the decision to

include in the DW sample people randomized after April 1976 only if they had zero earnings in

months 13–24 before randomization to be problematic. The Early RA sample consists of 108

treated and 142 control observations.

LaLonde’s non-experimental estimates were based on two different observational control groups:

the Panel Study of Income Dynamics (PSID-1) and Westat’s Matched Current Population Survey-

Social Security Administration file (CPS-1). Both PSID-1 and CPS-1 differ substantially from the

NSW experimental treatment group in terms of age, marital status, ethnicity, and pre-intervention

earnings. All mean differences across treated and control groups are significantly different from

zero at conventional significance levels, except the indicator for Hispanic ethnic background.

To bridge the gap between treatment and comparison group pre-intervention characteristics,

LaLonde extracted subsets from PSID-1 and CPS-1 (denoted PSID-2 and -3, and CPS-2 and -3)

that he deemed similar to the treatment group in terms of particular covariates.18 According to

LaLonde, these smaller comparison groups were composed of individuals whose characteristics

were similar to the eligibility criteria used to admit applicants into the NSW program. Even so,

the subsets remain substantially different from the control group and from each other. GenMatch

is applied to CPS-1 and PSID-1 because those offer the largest number of controls and because we

wish to determine if the matching algorithm itself can find suitable matches, without the help of

human pre-processing.

The NSW data and the LaLonde (1986) research design presents a difficult evaluation problem.

As observed by Smith and Todd (2005a), the data does not include a rich set of baseline covariates,

18PSID-2 selects from PSID-1 all men not working when surveyed in 1976; PSID-3 selects from PSID-1 all men
not working when surveyed in either 1975 or 1976; CPS-2 selects from CPS-1 all males not working in 1976; CPS-3
selects from CPS-1 all males non-employed in 1976 with 1975 income below the poverty level. CPS-1 has 15,992
observations, CPS-2 has 2,369 observations, and CPS-3 has 429 observations; PSID-1 has 2,490 observations, PSID-2
has 253 observations, and PSID-3 has 128 observations.
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the non-experimental comparison groups are not drawn from the same local labor market as par-

ticipants, and the dependent variable and the baseline earnings variables are measured differently

for participants and non-participants. Moreover, the original NSW experiment had four target

groups: ex-addicts, ex-convicts, high school dropouts, and long-term welfare recipients. Smith

and Todd argue that it is implausible that conditioning on the eight observed variables suffices to

make ex-addicts and ex-convicts look like (conditionally) random draws from the CPS or PSID.

In addition, there is no single uniquely defined experimental target result, but rather several can-

didate target estimates, all of which have wide confidence intervals.19 Much of the prior literature

has estimated the experimental treatment effect as the simple difference in the means of outcomes

across treatment and control groups, and we do the same. Taking simple differences results in an

estimated average treatment effect of $886 in the LaLonde sample, $1794 in the DW subsample,

and $2748 in the Early RA sample. The 95% confidence intervals of all three estimates cover $900

(see Table 3).

4.2 Matching Results

In Table 3 we present GenMatch results for six of the observational datasets considered in

the literature: the GenMatch estimate for each of the three NSW experimental samples paired

with CPS-1 controls and PSID-1 controls. GenMatch was asked to maximize balance in all of

the observed covariates, their first-order interactions, and quadratic terms. We also present, for

comparison, the results for propensity score matching if, for the given observational dataset, there

is a propensity score in the literature that obtains balance as measured by difference of means for

all of the baseline variables and their first order interactions. All of the propensity scores reported,

however, have baseline imbalances in at least one KS test of p-value < 0.001.

For the DW treatment subsample and the CPS-1 controls, GenMatch finds very good balance

on the observables. The smallest observed p-value is 0.21 across both t and KS tests. And in

19One might propose other experimental target estimates produced via matching, regression adjustment, or
difference-in-difference estimation: all produce qualitatively similar estimates.
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this case, the GenMatch estimate of $1734 matches the experimental benchmark of $1794 well.

However, when the DW treatment is matched to the PSID-1 controls, balance is poor (smallest p-

value: 0.029), and the matched estimate is $1045. This is still closer to the experimental benchmark

than the propensity score estimates we find in the DW sample that have good balance in difference

of means.

In the Early RA sample, GenMatch is again able to find good covariate balance with the CPS-1

controls: the smallest p-value is 0.46. However, the experimental estimate is $2748 while the

GenMatch estimate is $1631, although the estimates are not significantly different because of the

large confidence intervals. When the PSID-1 controls are used, GenMatch finds relatively poor

balance: the smallest p-value across the matching set is 0.089. Consequently, the GenMatch

estimate of $1331 is even further away from the experimental benchmark.

Recall that for both the Early RA sample and the DW sample, two years of prior earnings are

available. For the LaLonde sample this is not the case, and one would expect the bias to be greatest

in this dataset. In the LaLonde sample and the CPS-1 controls GenMatch finds good balance

(smallest p-value is 0.23), but the GenMatch estimate is $281 while the experimental benchmark

is $886. With the PSID-1 controls, the GenMatch balance is poor (smallest p-value is 0.024),

and the GenMatch estimate of �$571 is outside of the confidence intervals of the experimental

benchmark.20

In all cases GenMatch has better balance than the best propensity score estimates found, since

all of the propensity score estimates have at least one KS test with a p-value of less than 0.01,

although the p-values for the difference of means tests for all reported propensity score models are

greater than 0.05. The GenMatch estimates are less variable than those of the various propensity

score models.

Figure 5 shows how the distribution of GenMatch estimates varies with fitness. Fitness is mea-

sured as the lowest p-value obtained, after matching, from covariate-by-covariate paired t - and

20The GenMatch estimates are substantially similar if GenMatch is asked to optimize slightly different balance
measures than the default—e.g., if balance is measured as the mean standardized difference in the empirical-QQ plot
for each variable.
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KS-tests across all covariates, their first-order interactions, and quadratic terms. Each point rep-

resents one matched data set, its measure of balance, and its estimate of the causal effect. The

universe of possible 1-to-1 matched datasets with replacement using the CPS-1 controls was sam-

pled and plotted.21 The figure plots the search space which GenMatch is searching, and GenMatch

is able to find the best matched dataset in this universe. The upper panel shows the DW sample,

with estimates distributed above and below the target experimental result. The 64 best-balancing

estimates at the maximum fitness value are all within $52 of the experimental difference in means.

As the figure shows, in the DW sample, it is possible to get lucky and produce a reliable result even

when balance has not been attained. The figure helps to explain why it is possible for DW to obtain

accurate results with propensity scores models that do not achieve a high degree of balance, and

why it is possible for ST to find propensity scores with an equal degree of balance but estimates

that are far from the experimental benchmark. Reliable results are obtained only at the highest

fitness values.

The lower panel of Figure 5 shows that in the LaLonde sample, all the GenMatch estimates are

negatively biased, which may be expected given the omission of earnings in 1974. The figure for

the Early RA sample, not reported, looks similar to both of these figures. In the Early RA sample,

as seen in Table 3, the bias is greater than in the DW sample but less than in the LaLonde sample.

In this literature there are numerous propensity score models that achieve weak but convention-

ally accepted degrees of balance. DW follow a conventional approach to balance-testing, checking

balance across variables within blocks of a given propensity-score range. The DW papers do not

provide detailed information on the degree of balance achieved on each variable. Instead, the au-

thors plot the distributions of treated and control propensity scores and claim overlap. Upon our

replication of Dehejia and Wahba (2002) and Dehejia (2005), it is clear that while their figures

indicate overlap and their results satisfy conventional notions of balance, performing paired t -tests

and Kolmogorov-Smirnov tests across matched treated and control covariates yields significant

21The figures were generated by Monte Carlos sampling: 1,000,000 random values of W were generated, and the
unique matches that result from each unique weight matrix plotted.
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p-values.22

For example, consider the case that should be most favorable to DW: the DW experimental

sample, the control sample with the largest of the non-experimental control groups (CPS-1), and

the most recent propensity score specification from Dehejia (2005).23 In this case, the dummy

variable for high school degree has a t -test p-value significant at conventional test levels, as does

its interaction with age, education, and Black. We obtain Kolmogorov-Smirnov p-values less than

0.01 for all non-dichotomous covariates: age, education, and two years of pre-treatment income.

Moreover, the ratios of covariate variances across control and treatment groups exceed 2 in several

cases. By contrast, the lowest p-value GenMatch obtains in this case is 0.21.

5 Conclusion

The main advantage of GenMatch is that it directly optimizes covariate balance. This avoids

the manual process of checking covariate balance in the matched samples and then respecifying

the propensity score accordingly. Although there is little disagreement that this process should be

followed in principle, it is rarely followed in practice. By using an automated process to search

the data for the best matches, GenMatch is able to obtain better levels of balance without requiring

the analyst to correctly specify the propensity score. There is little reason for a human to try the

multitude of possible models to achieve balance when a computer can do this systematically and

faster.

Historically, the matching literature, like much of statistics, has been limited by computational

power. In recent years computationally intensive simulation and machine learning methods have

become popular. We think that matching is a case where computational power and machine learn-

ing algorithms may help. Our algorithm allows the researcher to include her substantive knowl-

22Smith and Todd (2005b) also note that the DW propensity score specifications fail some balancing tests other than
the one DW rely on.

23We have replicated the earlier DW results across their models and datasets and results are much the same. Their
propensity score matching methods do not achieve a very high degree of balance across all the confounders, their
interactions, and the quadratic terms.

22



edge of the data when choosing the covariates to match on, the measures of balance to use and the

propensity score model to include. It is also possible to start the algorithm with suggested weights

and indeed it is possible for the researcher to bound the weights. From this substantive base, the

algorithm will search and improve balance if possible given the data.

Open source software that implements GenMatch and a variety of other matching algorithms

is available for the R programming environment (R Development Core Team 2011). The package

is called Matching, and it is available on The Comprehensive R Archive Network.24 Details of

the software are described in Sekhon (2011). The software allows one to combine GenMatch with

a many of other matching methods, such as matching using calipers or matching exactly on some

variables.

There are many outstanding questions and issues. There are other ways to generalize Maha-

lanobis distance and these should be examined. Our proposed generalization works well in this

example and in examples which a variety of other researchers have produced; see Sekhon (2011)

for a review. But there is no claim that it is generally the best, especially since it is unclear how

to best measure the degree of covariate balance. It is also possible to use alternative optimization

methods to search the space of possible solutions. Finally, the estimand has been held fixed in

this study. It is possible to adapt the estimand, mostly by dropping observations, as to maximize

covariate balance (Crump, Hotz, Imbens, and Mitnik 2006).

There are a number of recent proposed methods that use a weighting approach, as opposed to

matching, and which build in covariate balance. These include auxiliary-to-study tilting (Graham,

Campos de Xavier Pinto, and Egel 2011), which has the benefit of being doubly robust (Robins,

Rotnitzky, and Zhao 1994, 1995), and a proposal to adapt maximum entropy weighting, which has

long been used in the survey data literature to match moments using auxiliary information, to the

case of estimating treatment effects (Hainmueller 2012). However, there are open questions about

the fragility of such weighting estimators in finite samples when the estimated probabilities of

treatment assignment are close to zero or one (Freedman and Berk 2008; Kang and Schafer 2007;

24http://CRAN.R-project.org/package=Matching
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Porter, Gruber, van der Laan, and Sekhon 2011).

The advantage of any new matching method is limited because of the selection on observables

assumption. The plausibility of the assumption must be carefully scrutinized in each application

using evidence beyond the statistical method. In observational studies, key identifying assumptions

cannot be tested by simulations or proven mathematically. Therefore, more validation studies

based on real data are needed to improve observational methods in practice and to clarify the

conditions in which these methods are appropriate.

A Data Generation Model Formulas for Simulation 1

This simulation study is from Lee et al. (2010), which is the same as Setoguchi et al. (2008)

except that a continuous outcome is substituted for the binary outcome used in the original study.

All of the true propensity score models are of the form PrŒT D 1 j Xi � D
1

.1 C expf��g/
. The

linear predictor, �, varies across the seven experimental conditions as follows.

Scenario A (a model with additivity and linearity):

� D ˇ0 C ˇ1X1 C ˇ2X2 C ˇ3X3 C ˇ4X4 C ˇ5X5 C ˇ6X6 C ˇ7X7

Scenario B (a model with mild non-linearity):

� D ˇ0 C ˇ1X1 C ˇ2X2 C ˇ3X3 C ˇ4X4 C ˇ5X5 C ˇ6X6 C ˇ7X7 C ˇ2X2
2

Scenario C (a model with moderate non-linearity):

� D ˇ0 C ˇ1X1 C ˇ2X2 C ˇ3X3 C ˇ4X4 C ˇ5X5 C ˇ6X6 C ˇ7X7 C ˇ2X2
2 C ˇ4X2

4 C ˇ7X2
7
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Scenario D (a model with mild non-additivity):

� D ˇ0 C ˇ1X1 C ˇ2X2 C ˇ3X3 C ˇ4X4 C ˇ5X5 C ˇ6X6 C ˇ7X7 C

ˇ10:5X1X3 C ˇ20:7X2X4 C ˇ40:5X4X5 C ˇ50:5X5X6

Scenario E (a model with mild non-additivity and non-linearity):

� D ˇ0 C ˇ1X1 C ˇ2X2 C ˇ3X3 C ˇ4X4 C ˇ5X5 C ˇ6X6 C ˇ7X7 C

ˇ2X2
2 C ˇ10:5X1X3 C ˇ20:7X2X4 C ˇ40:5X4X5 C ˇ5X5X6

Scenario F (a model with moderate non-additivity):

� D ˇ0 C ˇ1X1 C ˇ2X2 C ˇ3X3 C ˇ4X4 C ˇ5X5 C ˇ6X6 C ˇ7X7 C ˇ10:5X1X3 C

ˇ20:7X2X4 C ˇ30:5X3X5 C ˇ40:7X4X6 C ˇ50:5X5X7 C

ˇ10:5X1X6 C ˇ20:7X2X3 C ˇ30:5X3X4 C ˇ40:5X4X5 C ˇ50:5X5X6

Scenario G (a model with moderate non-additivity and non-linearity):

� D ˇ0 C ˇ1X1 C ˇ2X2 C ˇ3X3 C ˇ4X4 C ˇ5X5 C ˇ6X6 C ˇ7X7 C ˇ2X2
2 C ˇ4X4

4 C ˇ7X2
7 C

ˇ10:5X1X3 C ˇ20:7X2X4 C ˇ30:5X3X5 C ˇ40:7X4X6 C ˇ50:5X5X7

Cˇ10:5X1X6 C ˇ20:7X2X3 C ˇ30:5X3X4 C ˇ40:5X4X5 C ˇ50:5X5X6

The coefficients are: ˇ0 D 0, ˇ1 D 0:8, ˇ2 D �0:25, ˇ3 D 0:6, ˇ4 D �0:4, ˇ5 D �0:8,

ˇ6 D �0:5, and ˇ7 D 0:7.

The outcome model is:

Y D 
 T � 3:85 C 0:3X1 C �0:36X2 � 0:73X3 � 0:2X4 C 0:71X8 � 0:19X9 C 0:26X10

where 
 D �0:4 is the treatment effect.
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Table 1: Performance of Matching Estimation Methods in Simulation Study 1

Scenario

Metric Method A B C D E F G

Sample Size D 1000

Absolute bias GenMatch 1:64 0:976 1:85 0:042 0:375 0:107 2:39

(percent) Logit 0:395 3:73 12:6 6:51 9:58 8:98 16:8

RFRST 9:39 6:3 1:9 4:72 1:85 3:9 4:76

BOOST 23:7 19 11:2 25:9 20:2 23:1 14:5

RMSE GenMatch 0:0274 0:0259 0:0359 0:0286 0:027 0:0275 0:0334

Logit 0:0562 0:0574 0:0705 0:0674 0:0698 0:0668 0:0837

RFRST 0:0626 0:0548 0:06 0:055 0:0521 0:0532 0:0596

BOOST 0:151 0:132 0:15 0:162 0:135 0:147 0:154

Sample Size D 5000

Absolute bias GenMatch 0:694 0:0913 0:55 0:917 0:882 1:11 0:334

(percent) Logit 0:00172 4:64 13:4 6:25 10:3 8:8 16:3

RFRST 6:63 3:33 3:47 3:29 0:556 4:05 3:45

BOOST 3:13 7:37 6:29 10:7 8:78 11:3 10:4

RMSE GenMatch 0:013 0:0117 0:0219 0:0145 0:0136 0:0147 0:0191

Logit 0:022 0:0278 0:0569 0:0345 0:0469 0:0411 0:0675

RFRST 0:0321 0:0214 0:0288 0:0241 0:0206 0:0265 0:0251

BOOST 0:0461 0:0381 0:0535 0:0516 0:0441 0:0532 0:059

GenMatch=Genetic Matching, Logit=logistic regression, RFRST=Random Forest,
BOOST=Boosted CART.



Table 2: Performance of Matching Estimation Methods in Simulation Study 2

Estimator Bias % RMSE
Bias

Bias Genmatch
RMSE

RMSE Genmatch

GenMatch 4:32 512

RFRST 81:3 2223 18:8 4:34

BOOST 103:9 2492 24 4:87

Logit 51:2 1832 11:9 3:58

Raw 48:5 1611 11:2 3:15

GenMatch=Genetic Matching, RFRST=Random Forest, BOOST=Boosted CART, Logit=logistic
regression, Raw=simple mean differences.
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Figure 1: Flowchart of Algorithm for Iterative Estimation of a Propensity Score Model

Figure 2: Flowchart of Genetic Matching Algorithm



Figure 3: Balance of Matching Estimation Methods in Simulation Study 1, N D 1000
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Note: Boxplots of the smallest p-value of the balance tests in 1000 draws. Results for simulations
A�D. GM=Genetic Matching, LGR=logistic regression, RFRST=Random Forest,
BOOST=Boosted CART.



Figure 4: Balance of Matching Estimation Methods in Simulation Study 1, N D 1000
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Note: Boxplots of the smallest p-value of the balance tests in 1000 draws. Results for simulations
E�G. GM=Genetic Matching, LGR=logistic regression, RFRST=Random Forest,
BOOST=Boosting.



Figure 5: Reliable Estimates Require High Degree of Balance
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Lower bound, 95% CI of experimental estimate

Both plots are based on the CPS-1 observational control sample. The top plot uses the
Dehejia-Wahba experimental treatment sample, and the bottom plot uses the LaLonde
experimental treatment sample.
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