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We develop a robust estimator—the hyperbolic tangent (tanh) estimator—for overdispersed multinomial regression models
of count data. The tanh estimator provides accurate estimates and reliable inferences even when the specified model is
not good for as much as half of the data. Seriously ill-fitted counts—outliers—are identified as part of the estimation. A
Monte Carlo sampling experiment shows that the tanh estimator produces good results at practical sample sizes even when
ten percent of the data are generated by a significantly different process. The experiment shows that, with contaminated
data, estimation fails using four other estimators: the nonrobust maximum likelihood estimator, the additive logistic model
and two SUR models. Using the tanh estimator to analyze data from Florida for the 2000 presidential election matches
well-known features of the election that the other four estimators fail to capture. In an analysis of data from the 1993 Polish
parliamentary election, the tanh estimator gives sharper inferences than does a previously proposed heteroskedastic SUR
model.

Introduction

Regression models for vectors of counts are com-
monly used in a variety of substantive fields.
Count models have been used in international re-

lations (Schrodt 1995) and to analyze domestic political
violence (Wang, Dixon, Muller, and Seligson 1993). Other
social science applications include research on labor rela-
tions (Card 1990), the relationship between patents and
R&D (Hausman, Hall, and Griliches 1984), and mod-
els of household fertility decisions (Famoye and Wang
1997). Recent work analyzing counts in political science
includes studies of child care services (Bratton and Ray
2002), gender in legislatures (McDonagh 2002), gender
and educational outcomes (Keiser, Wilkins, Meier, and
Holland 2002), negative campaigning (Kahn and Kenney
2002; Lau and Pomper 2002), and votes (Canes-Wrone,
Brady, and Cogan 2002; Monroe and Rose 2002).

In most of these cases the most natural model for the
counts is the basic multinomial regression model (e.g.,
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Cameron and Trivedi 1998, 270; McCullagh and Nelder
1989, 164–74). Counts of this kind measure the distri-
bution of events among a finite set of alternatives, where
each event generates one outcome. For vote counts, the
alternatives are the candidates or parties that are com-
peting for a particular office, and the multinomial model
is relevant when each voter casts one vote. The model
does not examine each individual separately but instead
analyzes aggregates that correspond to the unit of obser-
vation. For vote counts the aggregates are usually legally
defined voting districts, such as precincts, or larger units
such as legislative districts, counties or provinces. Obser-
vations in this model measure the number of individuals
in each unit who choose each alternative.

A multinomial model treats the number of individ-
uals in each observational unit as fixed, and estimation
focuses on how the proportion expected to choose each
alternative depends on the regressors. Each expected pro-
portion corresponds to the probability of making each
choice according to the multinomial model. Usually these
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probabilities are defined as logistic functions of linear
combinations of the regressors (see Equation (1) below),
and the problem is to estimate values for the unknown
coefficient parameters in those linear combinations. In
the basic model the probabilities and the total of the
counts for each observation are both necessary to de-
fine the statistical distribution of the data, including the
mean and the variance. One of the most important rea-
sons to use a multinomial model is that the counts are het-
eroskedastic: the variance of the counts and consequently
statistical properties of parameter estimates, such as the
estimates’ standard errors, depend on both the probabil-
ities and the observation totals. The situation is analo-
gous to the reasons why one should use a logit or probit
model and not ordinary least squares (the linear probabil-
ity model) with binary choice data. Unfortunately, recent
analyses of count data in political science, such as Bratton
and Ray (2002), Canes-Wrone et al. (2002), Keiser et al.
(2002), Kahn and Kenney (2002), Lau and Pomper (2002),
McDonagh (2002), and Monroe and Rose (2002), reduce
the counts to percentages or proportions and ignore het-
eroskedasticity. As we shall illustrate in a sampling ex-
periment, ignoring heteroskedasticity generally results in
incorrect statistical inferences.

In practice the basic model has proved to be inade-
quate for vote counts. A problem that has been widely rec-
ognized is that aggregate vote data usually exhibit greater
variability than the basic multinomial model can account
for. In the basic multinomial model, the mean and the
variance are determined by the same parameters. A com-
mon theme in several recently proposed models is to in-
troduce additional parameters to allow the variance to be
greater than the basic model would allow. Indeed, Katz
and King (1999), Jackson (2002), and Tomz, Tucker, and
Wittenberg (2002) all allow not only the variance of each
vote but also the covariances between votes for differ-
ent candidates to differ from what the basic multinomial
model specifies. Katz and King (1999) introduce an “ad-
ditive logistic” (AL) model for vote proportions by trans-
forming the proportions into multivariate logits and then
assuming that the logits for each voting district are dis-
tributed according to a multivariate-t distribution.1 Tomz
et al. (2002) describe a similar, seemingly unrelated regres-
sion (SUR) model for vote proportions, except assuming
that the logits have a multivariate normal distribution.
Katz and King (1999) and Tomz et al. (2002) ignore het-
eroskedasticity and assume that the vote proportions are
homoskedastic. Jackson (2002) defines a SUR model that
uses the covariance matrix that the multinomial distribu-

1Katz and King (1999) also allow a party not to have a candidate on
the ballot in some districts.

tion specifies for the logits, in order to account for het-
eroskedasticity, but adds to that matrix an unrestricted
covariance matrix. Jackson (2002) also assumes multi-
variate normality.

Some extension to allow extra variability relative to
the basic multinomial model is certainly necessary with
vote data, but that is not enough to accommodate the
striking irregularities that often occur in elections. A more
general problem, and in a sense a prior problem, is that a
single model may not be valid for all of the counts in the
data. One well-known example is the vote in Florida for
the 2000 U.S. presidential election. Wand, Shotts, Sekhon,
Mebane, Herron, and Brady (2001) demonstrate that the
vote for Reform party candidate Pat Buchanan in Palm
Beach County was produced by processes substantially
unlike the processes that generated his vote throughout
the rest of Florida. Indeed, Wand et al. (2001) show that
vote counts for Buchanan in many counties across the var-
ious states of the U.S. were produced by processes unlike
those that occurred in most of the counties in each state.

Even if only a small fraction of the data are gen-
erated by a different model—perhaps only a single
observation—estimation that assumes that all the data
are good may produce seriously incorrect results. Given
our weak theories and messy data, it is often doubtful
that a single model is valid for all of the data. In any event,
none of the examples of count data analysis cited at the
beginning of this article do anything to detect whether the
model is valid for all of the data or to protect against the
chance that some of the data are discrepant.

The problem that a specified model may be good for
only some of the observed counts is prior to the problem
of extra variability in the sense that apparent departures
from the basic multinomial model may reflect the failure
of the model to hold for a subset of the observations, while
it is fine for the others. In that case it is better to identify the
part of the data for which the model is good and to separate
those observations from the others. In other words, it is
better to isolate the observations that are outliers relative
to the specified model and not let them distort the analysis.
It is possible for several outliers to distort an estimator
to such an extent that the distorted data appear to be
the norm and not the exceptions. Indeed, in such cases
observations for which the model is correct may appear to
be the outliers. This is the problem of masking (Atkinson
1986). For these reasons it does not work to try to identify
the outliers one point at a time. It is necessary to have a
method that locates all the outliers at once.

In this article we introduce a robust estimator for the
multinomial model that provides accurate estimates and
reliable inferences even when the model of interest is not
a good model for a significant minority of the data.
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We allow for extra variability relative to the ba-
sic multinomial model in the form of overdispersion
(McCullagh and Nelder 1989, 174). This means that the
covariance matrix of the basic multinomial model is mul-
tiplied by a positive constant that is greater than 1.0, so
that the model asserts that there is more variability than
occurs in the basic model. Overdispersion occurs when-
ever the choice probabilities vary across the individuals in
each observational unit, but clusters of individuals within
each unit have similar probabilities. For example, voters
with different levels of income may differ in their vot-
ing preferences, but we observe only the average income
in each district. We do not observe the income variation
across individuals, but we do observe that income varies
across voting districts. Consequently, we are able to as-
sess how the probability of voting for different candidates
varies across districts as a function of average district in-
come. In such cases, the vote probability estimated for a
given candidate in a voting district is the mean of the
probabilities of voters in that district. The overdisper-
sion parameter measures the variability of the individual
vote probabilities in each district around that district’s
mean probability. The dispersion parameter increases as
the individual probabilities vary more within each district.
Johnson, Kotz, and Kemp (1993, 141) explicitly formulate
the simplest form of a clustering mechanism that implies
overdispersion for the binomial case (see also McCullagh
and Nelder 1989, 125). Overdispersion is inevitable with
aggregate vote data, because district-level variables always
fail to capture traits that vary across voters in each district
which affect the choices they make.2

The estimator we develop produces correct results
with high efficiency if the specified model in fact is a good
approximation for the processes that produced most of
the observed counts. This is to say that in the extreme case
of completely correct specification, the robust estimator
and maximum likelihood (ML) estimation of the multi-
nomial model both produce consistent estimates, but the
robust method is less efficient. On the other hand, as we
shall illustrate, when the model is not correct for a frac-
tion of the data, the robust estimates will continue to be
good while ML estimates will in general be wrong, some-
times grossly wrong. There is no need to identify in ad-
vance the subset of the data for which the model is a good
approximation. The ill-fitted counts—the outliers—are
identified as part of the robust estimation procedure. The

2Underdispersion, where the covariance matrix is multiplied by a
constant is less than 1.0, is allowed in our model but rarely oc-
curs in practice. Underdispersion arises when the individual choice
probabilities tend to be similar within each observational unit but
different across units. Johnson et al. (1993, 138–39) describe a sim-
ple form of such clustering.

counts to which the model does not apply are effectively
omitted from the analysis and have no effect either on the
estimates of the coefficient parameters or on estimates of
the coefficients’ estimation error.

The method we introduce generalizes the robust esti-
mator for overdispersed binomial regression models that
was introduced by Wand et al. (2001).3 The generaliza-
tion is difficult and requires us to develop new methods
because the counts for the different choices are negatively
correlated in the multinomial model. Negative correla-
tions arise because the multinomial model conditions on
the total count for each observational unit. A way to un-
derstand the negative correlation is to think of the votes
as arriving one at a time. If a vote goes for one candidate,
it cannot go for any other candidate. So if one candidate’s
share of the votes goes up, the other candidates’ shares
go down because their counts remain the same while the
total increases. This competition among the choice al-
ternatives implies the negative correlations. Because each
candidate attracts votes in proportion to the choice prob-
ability for that candidate, the negative correlations are
functions of the choice probabilities. Many good robust
estimation methods exist for uncorrelated observations
but the problem of correlated data is much more difficult.

In order to produce uncorrelated residuals, we use a
new approach based on a formal orthogonal decomposi-
tion of the multinomial distribution’s covariance matrix.
The method applies to count data some of the statisti-
cal theory of qualitative and quantitative robustness that
has been developed to fulfill the three desirable features
outlined by Huber (1981, 5–17): the method has reason-
ably good efficiency when the model assumed for the data
is correct; small deviations from the model assumptions
(which may mean large deviations in a small fraction of
the data) impair the model’s performance only slightly;
and “somewhat larger deviations from the model should
not cause a catastrophe” (Huber 1981, 5). Our work also
responds to Western’s (1995) call for robust estimation
to be used with generalized linear models. Victoria-Feser
and Ronchetti (1997) rigorously demonstrate that ML es-
timation of the basic multinomial model is not robust
and develop an estimator for contaminated multinomial
data, although their estimator makes no provision for
overdispersion.

Katz and King’s (1999) AL model also can produce
good point estimates for coefficient parameters if the
specified model is not good for a fraction of the data.
This model treats the discrepant data by fattening the tails

3In addition to extending the model, we also correct an error in the
method Wand et al. (2001) used to estimate the standard errors of
the parameter estimates.
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of the multivariate-t distribution so that larger residuals
are more likely according to the model: the distribution’s
degrees of freedom (DF) parameter gets smaller as the
amount of differently generated data increases or as the
differently generated data’s discrepancy from the rest of
the data increases (cf. Lange, Little, and Taylor 1989). As
we demonstrate, however, this method does not produce
correct standard errors and therefore does not support
making correct statistical inferences. The two SUR mod-
els, which assume the data are multivariate normal, lack
any way effectively to downweight discrepant observa-
tions, and therefore they generally produce wrong results
when the specified model is not valid for some observa-
tions, as does the ML estimator for the basic model.

We begin with a brief description of the overdispersed
multinomial regression model and our new robust esti-
mation method. Then we present the results of a Monte
Carlo sampling experiment that demonstrates that the
method produces accurate parameter estimates and sup-
ports correct statistical inferences even when the data are
contaminated with counts that are generated by a sig-
nificantly different process. The study also shows that the
method correctly flags the contaminated observations and
hence provides an accurate method for outlier detection.
The AL model, on the other hand, produces accurate co-
efficient point estimates but incorrect standard errors,
while the nonrobust ML estimator and the SUR models
fail even to produce accurate point estimates. We then use
our method to analyze two sets of data. We analyze Florida
vote data from the 2000 presidential election, extending
the binomial (Buchanan versus the rest) model results of
Wand et al. (2001) to an analysis of five categories of pres-
idential candidates: Buchanan, Nader, Gore, Bush, and
“other.” We also improve the set of regressors, in particu-
lar taking the Cuban-American population explicitly into
account. Then we use our method to estimate the spec-
ification for the 1993 Polish parliamentary election that
was introduced by Jackson (2002).

Robust Estimation of an
Overdispersed Multinomial Model

We use the overdispersed multinomial model for J ≥ 2
outcome categories defined and motivated by McCullagh
and Nelder (1989, 174). Let i = 1, . . . , n index an ob-
served vector of J counts yi = (yi1, . . . , yiJ )′, and let
mi = ∑J

j=1 yij denote the total of the counts for obser-
vation i. Given probability pij , the expected value of yij

is Eyij = mipij . Let pi = (pi1, . . . , piJ )′ denote the vec-
tor of probabilities for observation i. P i = diag( pi) is a

J × J diagonal matrix containing the probabilities. The
covariance matrix for observation i is:

E [(yi − mi pi )(yi − mi pi )
′] = �2mi (Pi − pi p′

i ),

with �2 > 0 (McCullagh and Nelder 1989, 174, eq. 5.17).
Heteroskedasticity is apparent in the covariance matrix’s
dependence on both mi and pi. If �2 = 1 then the co-
variance is the same as in the basic multinomial model,
but if �2 > 1 then there is overdispersion. The proba-
bilities pij are functions of observed data vectors xij and
unknown coefficient parameter vectors � j . In particular,
pij is a logistic function of J linear predictors �ij = x ′

ij � j :

pij = exp(�ij)∑J
k=1 exp(�ik)

. (1)

When xij is constant across j, a commonly used identi-
fying assumption is � J = 0: J is said to be the reference
category. We gather the K unknown coefficients into a
vector denoted �.

To estimate the model we use robust estimators for
�2 and �: the least quartile difference (LQD) estima-
tor (Croux, Rousseeuw, and Hossjer 1994; Rousseeuw
and Croux 1993) for � = √

�2 and, given the estimate
for �, the hyperbolic tangent (tanh) estimator (Hampel,
Rousseeuw, and Ronchetti 1981; Hampel, Ronchetti,
Rousseeuw, and Stahel 1986, 160–66) for �. Here in the
main text we sketch the main features of the estima-
tion method. In the Appendix we present the further
details required to use the approach with overdispersed
multinomial data.

The estimator has two key robustness properties.
First, both the LQD and tanh estimators have the highest
possible breakdown point for a regression model. The
finite sample breakdown point of an estimator is the
smallest proportion of the observations one needs to re-
place in order to produce estimates that are arbitrarily far
from the parameter values that generated the original data
(Donoho and Huber 1983). The concept of breakdown
point that in a strict technical sense applies to the current
estimation problem is more complicated, for instance to
take into account the fact that asymptotic properties of
the estimator under regularity conditions are generally
of interest (Hampel et al. 1986, 96–98), but the intuition
behind the more general concept remains the same: even
large perturbations in a fraction of the data should not
affect the estimator’s performance. The LQD and tanh
estimators have a breakdown point of 1/2. The nonrobust
ML, AL, and the SUR estimators all have finite sample
breakdown points of 1/(nJ)—asymptotically zero.

The second important robustness property concerns
the degree to which perturbations of the data affect the
variability of parameter estimates. The tanh estimator is
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optimal in the sense that it minimizes the asymptotic vari-
ance of the estimates for a given upper bound on how
sensitive the asymptotic variance is to a change in the dis-
tribution of the data (Hampel et al. 1981). The existence
of such an upper bound implies that the tanh estimator
has a finite rejection point, which means that an observa-
tion that has a sufficiently large residual may receive zero
weight and hence not affect the parameter estimates at all.
Given the value of �, tanh estimators are by construction
the most efficient possible estimators of � that may put
zero weight on some observations (Hampel et al. 1986,
166).

Under a wide range of conditions in which the data
deviate to some extent from the specified model, the tanh
estimator is asymptotically normal with covariance ma-
trix given in general by the “sandwich” formula derived
by Huber (1967, 231; 1981, 133) and in particular by the
matrix �̂�̂ that we define in the Appendix. In the spe-
cial case where the model is exactly correct for a major-
ity of the data but the rest of the data are generated by
some other process, the tanh estimator is consistent for
the model’s parameters. The fact that consistency holds
when the model is correct for at least half of the data is
an implication of the tanh estimator’s high breakdown
point. Huber (1981, 127–32) proves the general result for
M-estimators that applies in this case. In this special case
the tanh estimator typically puts zero weight on the data
that are generated by the alternative processes, such that
two other familiar covariance matrix estimators are also
expected to be correct: the inverse of a weighted Hessian
matrix and the inverse of a weighted outer product of
the gradient (OPG). We define those matrices in the Ap-
pendix, denoted respectively �̂G:�̂ and �̂I:�̂.

A point of departure for our methods is the fact
that given any estimated probabilities p̂ij , the J residu-
als r̂ ij = (yij − mi p̂ij) for each i always sum to zero. This
result follows from the fact that the multinomial model
treats the sum mi of the counts for each observation i as
given, so that each vector of counts yi has only J − 1 inde-
pendent elements. That same feature of conditioning on
the total implies that, like the counts, the simple residuals
r̂ ij are negatively correlated with one another. We use a
formal Cholesky decomposition of the multinomial co-
variance matrix, which is an orthogonal decomposition
method derived by Tanabe and Sagae (1992), to produce
uncorrelated residuals for each observation, denoted r ⊥

i .
By construction, the J-th value r ⊥

iJ is zero, so that the first
J − 1 values in r ⊥

i contain all the information. Divid-
ing each of the J − 1 nonzero orthogonalized residuals
by its respective standard deviation, which Tanabe and
Sagae (1992) also derive, we obtain a set of normalized
values, denoted r̂ ∗

ij , that have a normal distribution with

variance �2 if mi is sufficiently large and the model is cor-
rectly specified for all the data. This normalization adjusts
for the heteroskedasticity associated with both mi and the
probabilities pi.

If the model is appropriate for only a majority of the
data and the values of the model’s parameters are known,
then for the counts that were generated by the alternative
processes, the residuals r̂ ∗

ij computed using those param-

eters are typically large relative to the variance �2. Ideally,
information from those counts would not be used to esti-
mate the parameters of the model that applies to most of
the data. The robust estimators we use approximate that
ideal behavior. For a given model specification—i.e., a set
of observed counts yij , regressors xij , and linear predictor
functional forms �ij —the estimators find the parameter
values that best characterize most of the data while down-
weighting information that is associated with normalized
residuals that are larger than one would expect to observe
in a sample of normal variates.

Our estimator produces a vector of J − 1 weights
for each observation, wi = (wi1, . . . , wi J −1)′, with wi j ∈
[0, 1]. The value 1 indicates that the tanh estimator is
giving full weight to the orthogonal component of the
data corresponding to r̂ ∗

ij , and the value 0 indicates that
the estimator is completely excluding information from
that component.

Further details regarding the robust estimator are in
the Appendix. To summarize briefly here, after using the
formal Cholesky decomposition to reduce the multivari-
ate robustness problem to a collection of uncorrelated
problems, we use the optimizing evolutionary program
called GENOUD (Sekhon and Mebane 1998) to find the
LQD estimates. Then we compute the tanh parameter esti-
mates via a weighted Newton algorithm and estimate the
asymptotic covariance matrix. The use we make of the
LQD and tanh estimators is novel, but we have nothing to
add to the statistical understanding of those estimators per
se. The statistical properties of those estimators are well
established in the statistical literature, as are the proper-
ties of asymptotic covariance matrices for M-estimators
(Carroll and Ruppert 1988, 209–13; Huber 1967; White
1994), which we also apply.

A Monte Carlo Sampling Experiment

To assess the performance of the robust tanh estimator,
the nonrobust ML estimator and the AL, SUR, and het-
eroskedastic SUR models under a range of conditions, we
conduct a Monte Carlo sampling experiment using six
different types of simulated data. We examine six differ-
ent experimental conditions, replicating each condition
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TABLE 1 Monte Carlo Sampling Experiment Plan

Experimental Multinomial
Condition Probabilities Contamination Overdispersion

1 symmetric none no
2 symmetric none yes
3 symmetric 10% no
4 symmetric 10% yes
5 asymmetric 10% no
6 asymmetric 10% yes

Note: In each condition there are J = 4 categories, n = 100 observations, and a total of mi = 10,000 counts
per observation. The symmetric outcome probabilities, used for the uncontaminated observations in
conditions 1–4, have expected values of approximately 0.244, 0.244, 0.244, and 0.267. The asymmetric
probabilities, used for the uncontaminated observations in conditions 5 and 6, have expected values of
approximately 0.037, 0.060, 0.445, and 0.458.

1,000 times. In each replication we generate observations
consisting of four counts (J = 4) with mi = 10,000. We
conduct the experiment for n = 50 and n = 100 obser-
vations. The linear predictors have the same functional
form for all conditions. Each of the first J − 1 predictors
includes a single, simulated regressor, denoted xi, and a
constant, while the J-th predictor is set to zero:

�ij =
{

� j 0 + � j 1xi , j = 1, . . . , J − 1,

0, j = J .

In each experimental condition the regressor is constant
across choice categories j = 1, . . . , J − 1. The conditions
differ by having different values for the regressor, the co-
efficients or the dispersion.

Table 1 lays out the overall design of the experiment.
The first four experimental conditions all have the same
linear predictors. The regressor is normally distributed
with mean one and variance one. The regressor values
are the same in every replication. For all the linear pre-
dictors, j = 1, . . . , J − 1, the coefficient parameters are
� j 0 = −1 and � j 1 = 1. With this specification the ex-
pected outcome probability is approximately the same
for all four categories: pi1 = pi2 = pi3 = 0.2442 and
pi4 = 0.2673. Experimental condition 1 features un-
contaminated multinomial data with no overdispersion,
i.e., �2 = 1. Condition 2 is the same except that it
includes overdispersion. We used the cluster-sampling
model (McCullagh and Nelder 1989, 174) to generate
counts for which �2 = 5.5. Conditions 3 and 4 have ten
percent of the data generated by a different process from
the rest of the data. In condition 3, ten percent of the con-
dition 1’s observations are perturbed in such a way that the
constant parameters in their linear predictors are approx-
imately �10 = −2.099 and �30 = −0.489. The other four
parameters are the same for all observations. Condition 4

is the same as condition 3 except with the same kind of
overdispersion as in condition 2.

Experimental conditions 5 and 6 feature ten percent
contamination with skewed outcome probabilities. For
ninety percent of the observations the regressors are again
normally distributed with mean one and variance one, but
the constant parameter values are �10 = −3.5, �20 = −3
and �30 = −1, and �11 = �21 = �31 = 1. The expected
outcome probabilities are approximately pi1 = 0.0366,
pi2 = 0.0603, pi3 = 0.4453 and pi4 = 0.4578. The re-
maining ten percent of the observations have regressor
values that are normally distributed with a mean of −.5
and a variance of 4. The parameters for these contami-
nated observations are �10 = �20 = 0.001, �30 = 2.000,
�11 = �21 = −2.000 and �31 = −1.000. The values of the
regressor are constant across replications. Unlike the first
four conditions, in conditions 5 and 6 the counts that
are contaminated because they are generated according
to different parameter values are also associated with re-
gressors that have a different mean and variance than the
regressors associated with the balance of the data. These
high-variance regressors have high leverage (Carroll and
Ruppert 1988, 31–33), which means that nonrobust esti-
mated regression lines should be induced to pass near the
contaminated observations.

For each replication we use all five models to com-
pute estimates for the coefficient parameters. The nonro-
bust ML estimates use the multinomial model likelihood.
In the absence of contamination, such ML estimates are
consistent for the coefficient parameters whether or not
there is overdispersion. For the ML estimates we com-
pute confidence intervals using both the nonrobust in-
verse Hessian matrix alone and the nonrobust inverse
Hessian multiplied by the usual nonrobust estimate of
dispersion (McCullagh and Nelder 1989, 175). For the
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TABLE 2 Monte Carlo Sampling Experiment Results Summary, N = 100

Hyperbolic Tangent

H-W Coverage Hessian Coverage OPG Coverage
Experiment Coeff.
Condition RMSE 90% 95% 90% 95% 90% 95%

1 0.004 0.863 0.926 0.870 0.935 0.889 0.944
2 0.009 0.858 0.921 0.868 0.927 0.882 0.936
3 0.004 0.889 0.938 0.897 0.946 0.915 0.955
4 0.010 0.870 0.930 0.884 0.939 0.904 0.951
5 0.007 0.888 0.939 0.896 0.947 0.913 0.955
6 0.016 0.866 0.924 0.883 0.937 0.907 0.951

Nonrobust Maximum Likelihood Additive Logistic

Coverage Coverage: �̂2 Coverage
Coeff. Coeff.
RMSE 90% 95% 90% 95% RMSE 90% 95%

0.004 0.898 0.949 0.899 0.948 0.004 0.860 0.921
0.009 0.511 0.593 0.896 0.945 0.010 0.850 0.909
0.030 0.301 0.316 0.999 1.00 0.005 0.800 0.871
0.031 0.184 0.215 0.969 0.998 0.012 0.815 0.885
1.11 0.000 0.000 0.000 0.000 0.009 0.822 0.887
1.11 0.000 0.000 0.000 0.000 0.020 0.820 0.884

SUR Heteroskedastic SUR

Coverage Coverage
Coeff. Coeff.
RMSE 90% 95% RMSE 90% 95%

0.005 0.837 0.902 0.004 0.896 0.942
0.011 0.832 0.893 0.010 0.896 0.944
0.035 0.922 0.963 0.034 0.953 0.979
0.036 0.849 0.935 0.036 0.894 0.967
1.47 0.000 0.000 1.43a 0.345a 0.359a

1.48 0.000 0.000 1.46 0.000 0.000

Note: Based on 1,000 replications for each condition. All results except “Coeff. RMSE” are reported to three significant figures.
aUsing 795 converged replications.

tanh estimates we compute confidence intervals based on
the Huber-White sandwich, the inverse weighted Hessian
and the inverse OPG estimators. For the AL model we
compute confidence intervals based on the estimate of
the asymptotic covariance matrix computed by inverting
the Hessian matrix of the model’s log likelihood function.
For the SUR model we use the same FGLS approach as do
Tomz et al. (2002).4 For the heteroskedastic SUR model

4To estimate the SUR model we used the R packagesystemfit (ver-
sion 0.5-6), available from the Comprehensive R Archive Network
(CRAN, http://cran.r-project.org/). Standard errors are
corrected for degrees-of-freedom.

we use the covariance matrix estimate given by Jackson
(2002, 54, eq. 13).5 We compute symmetric confidence
intervals using ordinates of the normal distribution and
standard errors computed as the square root of the diag-
onal of each covariance matrix estimate.

Table 2 summarizes the results for n = 100, pooling
over all the coefficient parameters. The second column
reports the root mean squared error (RMSE) of the coef-
ficient estimates compared to the values used to generate

5To estimate the heteroskedastic SUR model we used FORTRAN
code originally written by John Jackson and slightly modified by us
to suit our simulated data.
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all (conditions 1 and 2) or most (conditions 3–6) of the
data. The results illustrate that the tanh estimator gives ac-
curate point estimates even when there is contaminated
data: the RMSE is small in every condition. The nonro-
bust ML estimator need not give accurate point estimates
given contaminated data: the RMSE is small when there is
no contamination or only slight contamination but very
large when there is serious contamination. In particular,
in experimental conditions 5 and 6 the RMSE is 1.11. The
SUR and heteroskedastic SUR models give point estimates
similar to the nonrobust ML estimator.6 The AL model
has accurate point estimates in every condition, although
the RMSE of the estimates is larger than the RMSE us-
ing the tanh estimator. Similar results (not shown) occur
when n = 50.

Table 2 also shows that the estimated covariance ma-
trices of the tanh estimates support confidence intervals
that are approximately correct even when there is con-
tamination. The coverage results in the table report the
proportion of replications in which the nominal 90% or
95% confidence interval contains the parameter value that
generated all (conditions 1 and 2) or most (conditions
3–6) of the data. With no contamination and no overdis-
persion (condition 1), the intervals based on the Huber-
White sandwich estimator under cover by about three
(n = 100) percent (for n = 50, four percent). The inter-
vals based on the weighted Hessian do slightly better in
this condition, and the intervals based on the weighted
OPG are even more accurate, under covering by one per-
cent or less. The results with overdispersion (condition
2) are similar. In the other experimental conditions the
coverage of the sandwich and weighted Hessian estima-
tors typically improves by about one percent, while the
weighted OPG intervals continue to be basically accurate.
All three interval estimators have reasonably good cover-
age even with contaminated data.

In contrast, Table 2 shows that nonrobust confidence
intervals are essentially worthless when there is contam-
ination. Both of the nonrobust ML interval estimators
produce correct coverage when there is neither contam-
ination nor overdispersion (condition 1). When there is

6The heteroskedastic SUR model fails to converge for a number
of replications in experimental condition 5 with n = 100 and in
conditions 1, 3 and 5 with n = 50. Convergence fails because the
estimated covariance matrix becomes indefinite. This occurs be-
cause the model Jackson (2002) defines features a shortcut that
implies that a component of the error variance is double counted.
The matrices he denotes �� i are computed using the observed sam-
ple proportions, not the values predicted by the model. This means
that the error variances and covariances that result from the model’s
not perfectly reproducing the observed proportions affect both �� i

and the expected variance-covariance matrix of the residuals that
he computes (Jackson 2002, 64, eq. A3).

overdispersion but not contamination, correct coverage
occurs only when the estimator takes the dispersion into
account (condition 2). Given contamination and the sym-
metric outcome probabilities (conditions 3 and 4), the
intervals that are based on ignoring overdispersion in-
clude the target values in less than one-third of the replica-
tions. The intervals that take overdispersion into account
almost always include the target values, because the inter-
vals are too wide. Given contamination and the asymmet-
ric outcome probabilities (conditions 5 and 6), we have
the spectacular result that the intervals (with or with-
out the dispersion correction) never include the target
parameter values. The heteroskedastic SUR model per-
forms similarly, with slightly greater degradation at the
smaller sample size. The SUR model never gives correct
coverage.

Table 2 shows that the accurate point estimates of the
AL model are not matched by accurate confidence inter-
vals. With no contamination and no overdispersion (con-
dition 1), the intervals under cover on average by three or
four percent for n = 100 (by five or six percent for n =
50). With overdispersion (condition 2) the under coverage
typically worsens by one or two percent. With contami-
nation (conditions 3–6) coverage performance degrades
further, with under coverage ranging from six to ten per-
cent for n = 100 (from seven to twelve percent for n =
50). The detailed results for each parameter show that
Table 2 understates how inaccurate the AL model’s con-
fidence intervals are. For instance in condition 1, with
parameters ordered as in Table 3, for n = 100 the nominal
90% intervals have coverages 0.91, 0.81, 0.91, 0.80, 0.92,
and 0.81, and nominal 95% intervals have coverages 0.95,
0.89, 0.96, 0.88, 0.96, and 0.89.

The estimation results with contamination warrant
detailed examination. Table 3 shows results for condi-
tion 3 (symmetric probabilities, 10% contamination and
no overdispersion), with n = 100. We report the means
and RMSEs of the estimates over replications and cov-
erage results for the estimated confidence intervals. The
tanh point estimates are accurate and the tanh intervals
have good coverage for all parameters. The AL model
has accurate point estimates but mostly incorrect con-
fidence intervals. Intercept parameter intervals are cor-
rect or under cover only slightly, but intervals for the
other coefficients under cover by as much as twenty
percent.

The contamination of ten percent of the data causes
serious problems for the nonrobust estimators. Four of
the nonrobust ML parameter estimates are biased: �10,
�30, �11, and �31. The confidence interval estimates for
those parameters utterly fail to cover the target values.
Coverage for the estimates that ignore overdispersion
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TABLE 3 Summary for Experiment Condition 3: Symmetric Probabilities, 10% Contamination, No
Overdispersion, N = 100

Hyperbolic Tangent Additive Logistic

H-W Coverage Hessian Coverage OPG Coverage Coverage

Symbol Mean RMSE 90% 95% 90% 95% 90% 95% Mean RMSE 90% 95%

�10 −1.00 0.004 0.891 0.945 0.902 0.952 0.922 0.964 −1.00 0.005 0.885 0.937
�11 1.00 0.003 0.892 0.944 0.901 0.948 0.917 0.955 1.00 0.005 0.789 0.864
�20 −1.00 0.004 0.891 0.933 0.892 0.942 0.903 0.951 −1.00 0.005 0.823 0.886
�21 1.00 0.004 0.877 0.929 0.881 0.940 0.908 0.955 1.00 0.005 0.709 0.803
�30 −1.00 0.004 0.893 0.945 0.905 0.947 0.919 0.950 −1.00 0.005 0.851 0.908
�31 1.00 0.004 0.890 0.934 0.900 0.946 0.923 0.957 1.00 0.005 0.743 0.829

Nonrobust Maximum Likelihood SUR Heteroskedastic SURa

Coverage Coverage: �̂2 Coverage Coverage

Mean RMSE 90% 95% 90% 95% Mean RMSE 90% 95% Mean RMSE 90% 95%

−1.05 0.050 0.000 0.000 0.997 1.00 −1.07 0.066 1.00 1.00 −1.07 0.066 1.00 1.00
0.980 0.020 0.000 0.000 1.00 1.00 0.962 0.039 0.999 1.00 0.961 0.039 1.00 1.00

−1.00 0.004 0.901 0.947 1.00 1.00 −1.00 0.005 0.908 0.957 −1.00 0.004 0.894 0.939
1.00 0.003 0.907 0.946 1.00 1.00 1.00 0.005 0.754 0.830 1.00 0.003 0.881 0.936

−0.953 0.047 0.000 0.000 0.998 1.00 −0.970 0.031 0.953 1.00 −0.969 0.031 0.963 1.00
1.02 0.018 0.000 0.001 1.00 1.00 1.02 0.019 0.920 0.993 1.02 0.018 0.978 0.998

Note: Based on 1,000 replications for each condition. All results except “Coeff. RMSE” are reported to three significant figures.

ranges from zero to 0.001—overdispersion should be ig-
nored because there is no overdispersion in this condition.
Notice that the estimates for �20 and �21 lack bias, and
the overdispersion-ignoring confidence interval estimates
for those parameters are accurate. These results reflect the
success of our experimental manipulation, which sought
to leave the estimates for these parameters undistorted.
The nonrobust ML interval estimates that try to accom-
modate overdispersion all fail to have accurate coverage
because they are too wide. The inaccuracy of the parame-
ter estimates generates a biased—too large—estimate for
the overdispersion, producing excessively large estimated
standard errors. Results with the SUR and heteroskedastic
SUR models are similar. Detailed results for n = 50 and
condition 4 (not shown) are similar.

Table 4 shows detailed results for condition 5 (asym-
metric probabilities, 10% contamination and no overdis-
persion), with n = 50. For the tanh estimator the results
are similar to those for condition 3. The coverage results
for the sandwich and weighted Hessian confidence in-
tervals are slightly worse. The AL model again has accu-
rate point estimates and incorrect confidence intervals.
All the nonrobust estimates are seriously biased. Indeed,

for �11 and �21 the mean nonrobust ML estimate has the
opposite sign from the parameter values that generated
90 percent of the data. Interestingly, the two parameters
that have incorrect signs are significantly different from
zero according to confidence intervals constructed using
the nonrobust ML covariance matrix. The confidence in-
terval estimates from the nonrobust estimator utterly fail
to cover the parameter values that generated 90 percent
of the data: the intervals never include those values. Re-
sults with the SUR and heteroskedastic SUR models are
similar. Detailed results for condition 6 (not shown) are
similar.

The tanh weights wij correctly identify the contami-
nated observations. For the uncontaminated observations
the weights have a median of 1 over all six conditions for
n = 100 (mean 0.994, standard deviation 0.043), and for
n = 50 the median is also 1 (mean 0.994, standard de-
viation 0.041).7 For the contaminated observations, in

7All six conditions have the same median. By condition, the means
and standard deviations for n = 100 are 0.988 and 0.062, 0.988 and
0.061, 0.997 and 0.026, 0.997 and 0.026, 0.997 and 0.027, 0.996 and
0.033. For n = 50 they are 0.989 and 0.059, 0.989 and 0.057, 0.997
and 0.025, 0.997 and 0.025, 0.997 and 0.026, 0.996 and 0.034.
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TABLE 4 Summary for Experiment Condition 5: Asymmetric Probabilities, 10% Contamination,
No Overdispersion, N = 50

Hyperbolic Tangent Additive Logistic

H-W Coverage Hessian Coverage OPG Coverage Coverage

Symbol Mean RMSE 90% 95% 90% 95% 90% 95% Mean RMSE 90% 95%

�10 −3.50 0.015 0.851 0.912 0.874 0.925 0.909 0.952 −3.50 0.019 0.738 0.809
�11 0.999 0.010 0.847 0.912 0.889 0.943 0.934 0.968 1.00 0.012 0.775 0.846
�20 −3.00 0.012 0.871 0.918 0.891 0.938 0.913 0.966 −3.00 0.016 0.752 0.832
�21 1.00 0.008 0.863 0.930 0.895 0.948 0.938 0.969 1.00 0.010 0.783 0.852
�30 −1.00 0.005 0.874 0.929 0.899 0.947 0.919 0.961 −1.00 0.006 0.857 0.915
�31 1.00 0.004 0.870 0.924 0.884 0.948 0.931 0.971 1.00 0.005 0.850 0.905

Nonrobust Maximum Likelihood SUR Heteroskedastic SURa

Coverage Coverage: �̂2 Coverage Coverage

Mean RMSE 90% 95% 90% 95% Mean RMSE 90% 95% Mean RMSE 90% 95%

−2.16 1.34 0.000 0.000 0.000 0.000 −1.95 1.55 0.000 0.000 −1.97 1.54 0.237 0.245
−0.299 1.30 0.000 0.000 0.000 0.000 −0.41 1.41 0.000 0.000 −0.395 1.40 0.222 0.225
−1.81 1.19 0.000 0.000 0.000 0.000 −1.52 1.48 0.000 0.000 −1.54 1.46 0.264 0.268
−0.148 1.15 0.000 0.000 0.000 0.000 −0.371 1.37 0.000 0.000 −0.355 1.36 0.235 0.251
−0.525 0.475 0.000 0.000 0.000 0.000 0.102 1.10 0.000 0.000 0.092 1.09 0.264 0.267

0.552 0.448 0.000 0.000 0.000 0.000 0.042 0.958 0.000 0.000 0.054 0.949 0.255 0.262

Note: Based on 1,000 replications for each condition. All results except “Coeff. RMSE” are reported to three significant figures.
aResults using 952 converged replications.

conditions 3 through 6, the median weight is 0 for n =
100 (mean 0.029, standard deviation 0.143), and for n =
50 the median is also 0 (mean 0.039, standard deviation
0.171).8

To summarize, the sampling experiment shows that
the robust estimator performs well under a wide variety
of circumstances: with or without contamination; with or
without overdispersion; with symmetric or with highly
skewed choice probabilities. Even when some data are
contaminated and have high leverage regressors, point
estimates for coefficient parameters are accurate and pre-
cise, and confidence interval estimates are accurate. In
contrast, contamination in part of the data generally de-
stroys the nonrobust estimators. When there is contam-
ination, the nonrobust ML estimator produces estimates
that exhibit substantial bias, including incorrectly signed
coefficient values. The nonrobust SUR and heteroskedas-
tic SUR models fail similarly. The nonrobust confidence
intervals are untrustworthy and useless: recall that in

8All four conditions have the same median. By condition, the means
and standard deviations for n = 100 are 0.000 and 0.000, 0.035 and
0.135, 0.009 and 0.061, 0.074 and 0.238. For n = 50 they are 0.000
and 0.000, 0.026 and 0.115, 0.019 and 0.092, 0.111 and 0.296.

two experimental conditions (5 and 6) the intervals fail
to cover the target parameters even one time in 1,000
replications.

The AL model typically produces accurate point es-
timates but incorrect estimates of the sampling error and
hence incorrect statistical inferences. The model fails even
when there is no contamination because it ignores het-
eroskedasticity. The SUR model of Tomz et al. (2002) also
has this defect. If the multinomial model holds, then the
AL model does not satisfy a regularity condition necessary
for asymptotically normal estimation (e.g., White 1994,
92, Assumption 3.2′): the counts become normal as the mi

values get large, so that the true value of the multivariate-t
distribution’s DF parameter goes to infinity. An indica-
tion of this occurs in the data for experimental condition
1, where for n = 100 the median estimate for the DF is
20.8, but 48 of the 1,000 estimates are greater than 106.
For n = 50, the median DF is 47.4, but 109 estimates are
greater than 106.

If there is substantial contamination, then the AL
model fails to produce asymptotically normal estimates
because the DF value becomes too small. If DF < 2, the
distribution lacks a finite variance, and if DF < 1, the
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distribution lacks a finite mean. In such cases ML esti-
mates are not asymptotically normal. DF values less than
2.0 or less than 1.0 occur frequently in the experiment
data. In conditions 3 through 6 for n = 100, the median
DF estimates are respectively 1.2, 1.6, 0.96, and 1.1, and
for n = 50 the median values are 1.2, 1.5, 0.94, and 1.1.
Lange et al. (1989, 884) acknowledge that excessively small
DF values may occur, observing that “the t model is not
well suited to data with extreme outliers.”

Florida in 2000

For the first example using real data we consider votes cast
for president in the 2000 election in Florida. We compare
the tanh estimator to the nonrobust ML estimator and
the AL, SUR, and heteroskedastic SUR models. Statisti-
cal inferences based on the tanh estimator match impor-
tant features of the election that the other four estimators
miss. As in the sampling experiment, the point estimates
for the AL and tanh are similar, but statistical inferences
based on the estimators differ substantially. Also as in the
experiment, differences between the tanh and the other
estimators are greater. The tanh results replicate and ex-
tend the key results of Wand et al. (2001) regarding the
effects of Palm Beach County’s butterfly ballot.

We judge the substantive results of the estimators in
light of two key features of the 2000 presidential elec-
tion in Florida. First, during 2000 Gore launched a mo-
bilization drive throughout Florida that brought many
voters into the electorate for the first time (e.g., Bonner
and Barbanel 2000). About 40 percent of blacks voting in
Florida in the 2000 election were new voters (Mintz and
Keating 2000). This mobilization suggests that changes
in Democratic registration between the 1996 and 2000
elections ought to be important for the Gore vote. Sec-
ond, not only did the Elián González episode provoke an
extremely negative reaction to Gore among many Cuban-
Americans, especially in Miami (e.g., Forero and Bar-
ringer 2000; Toobin 2001, 149), but Cuban-Americans
tend to be strongly Republican (Alvarez and Bedolla 2003;
DeSipio 1996; Moreno 1997). For instance, while on the
whole Miami-Dade County favored Gore over Bush by 53
percent to 46 percent, in that county Bush received 75.8
percent of the two-party vote in census tracts in which 50
percent or more of the population is Cuban-American.9

We analyze the number of votes cast in Florida in
2000 for presidential candidates Buchanan, Nader, Gore,
Bush and a residual category consisting of votes for all
of the other candidates. The candidates in the residual

9The percentage is computed from data in Florida Legislative Staff
(2001).

category include Harry Browne (Libertarian), Howard
Phillips (Constitution Party), John Hagelin (Natural Law
Party), and any other candidate listed on the ballot as well
as any write-in candidates. We ignore undervotes (no ap-
parent vote recorded on the ballot), overvotes (votes for
more than one presidential candidate on a single ballot)
and other spoiled ballots. We use all five estimators as-
sessed in the sampling experiment to analyze county-level
data from Florida’s 67 counties. Using an improved set of
regressors, the tanh estimates replicate the basic findings
of Wand et al. (2001) regarding the vote for Buchanan
in Palm Beach County. The tanh estimates also show
that having a higher proportion of Cuban-Americans in
a county produced more support for Bush than for Gore,
and that increases in Democratic registration produced
more votes for Gore. The other estimators fail in various
ways to produce these results.

For the county-level model, we use linear predictors
�ij that are functions of presidential vote proportions in
the 1996 election, changes in party registration propor-
tions from 1996 to 2000, the proportion of the population
in each county in the 2000 Census that is of Cuban na-
tional origin, and a principal component computed using
the same nine demographic variables that were used in
Wand et al. (2001, 796–97).10 The idea is that the vote for
a party’s candidate in the previous presidential election is
a proxy for the interests, party sentiments and local party
and other organization in each county, while the collec-
tion of demographic variables picks up changes during
the intervening time period. The party registration vari-
ables for each county should provide sharper measures
of the political changes than the demographics alone do,
and so their inclusion represents an important substantive
improvement over Wand et al. (2001). We use a princi-
pal component instead of the separate demographic vari-
ables to enhance the efficiency and interpretability of the
other coefficients—the demographic variables are nearly
aliased (McCullagh and Nelder 1989, 61–62) with previ-
ous vote, party registration and Cuban population.

With J = 5, the linear predictors may be written as
follows.

�ij =




� j 0 + � j 1V96ij + � j 2�R00ij

+ � j 3Cubani + � j 4PCij, j = 1, . . . , 4,

0, j = 5.

(2)

10The demographic variables are: the 2000 Census of Population
and Housing proportions of county population in each of four
Census Bureau race categories (White, Black, Asian and Pacific
Islander, and American Indian or Alaska Native), 2000 propor-
tion Hispanic, 2000 population density (i.e., 2000 population/1990
square miles), 2000 population, 1990 proportion of population
with college degree, and 1989 median household money income.
See Wand et al. (2001, 796) for sources.
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TABLE 5 Overdispersed Multinomial Model for 2000 Election Vote
Counts, Florida Counties

Buchanan Nader

Coeff. SE Coeff. SE

Constant −0.312 0.212 1.05 0.190
1996 Vote Proportion 3.38 1.74 0.323 0.420
Change in Party Registration 14.4 1.46 1270 110
Proportion Cuban −5.73 2.45 0.284 0.402
Principal Component −0.0254 0.0257 −0.00686 0.0175

Gore Bush

Coeff. SE Coeff. SE

Constant 3.37 0.159 4.13 0.137
1996 Vote Proportion 3.13 0.323 1.71 0.275
Change in Party Registration 1.80 0.910 2.04 0.744
Proportion Cuban 2.03 0.340 2.75 0.290
Principal Component −0.0246 0.0111 0.00383 0.00988

Note: n = 67 counties.Entries are tanh estimates and sandwich standard errors. Dispersion estimates:
�̂LQD = 5.06; �̂tanh = 4.45.

The correspondence between candidates and categories is
Buchanan ( j = 1), Nader ( j = 2), Gore ( j = 3), Bush
( j = 4), and Other ( j = 5). There are 20 unknown coeffi-
cient parameters, � = (�10, . . . , �44)′. The V96ij variables
measure the proportion of each county’s votes for vari-
ous presidential candidates in 1996, out of all valid votes
cast. V96i1 is the proportion for Ross Perot (Reform),
V96i2 is the sum of the proportion for Nader (Green),
and the proportion for Bill Clinton (Democrat),11 V96i3

is the proportion for Clinton, and V96i4 is the propor-
tion for Bob Dole (Republican). The �R00ij variables
measure changes from 1996 to 2000 in party registration.
�R00i1 and �R00i4 are both the change in the propor-
tion Republican among registered voters in county i,12

and �R00i3 is the change in the proportion Democratic.
Because Green Party registration in Florida in 1996 was so
rare as to be uninformative for voting behavior in 2000,
we reduce �R00i2 to simply the proportion Green among
registered voters in 2000. Cubani denotes the proportion
Cuban-American in county i. Applying the same method
used by Wand et al. (2001, 797), each PCij variable is the
first principal component of the set of standardized resid-

11Alternative specifications in which V96i2 includes only the 1996
proportion for Nader fit the data worse than does the definition we
use here.

12Defining �R00i1 as the change in Reform party registration pro-
duces a worse fit to the data. In light of many Reform party members’
resistance to the Buchanan takeover of the party in Florida (e.g.,
Garvey 2000), a weak relationship between Reform registration and
support for Buchanan is not surprising.

uals produced by regressing each demographic variable
on a constant, V96ij , �R00ij , and Cubani . The principal
components are computed separately for each linear pre-
dictor.13 Hence the principal components vary across the
predictors.

Table 5 presents the tanh estimation results, with
sandwich standard errors. Votes in 2000 are significantly
related to the 1996 election results for all of the candidates
except Nader. Changes in voter registration between 1996
and 2000 matter for all of the candidates. The estimated ef-
fect of Democratic registration changes on votes for Gore
(�32) is not significantly less than the estimated effect of
Republican registration changes on votes for Bush (�42).
The proportion Cuban-American has significant effects
in the linear predictors for Buchanan, Gore and Bush. For
Buchanan the effect is large and negative (−5.73), while
the effects are positive for the other two candidates, larger
for Bush (2.75) than for Gore (2.03). The discrepancy
between the estimates for Gore and Bush, which is larger
than two standard errors, represents a significant tendency
for Cuban-Americans to support Bush more than Gore,
net of previous voting history or current partisanship.

Figure 1 summarizes the results for all five models
in a graphical form that facilitates comparisons across
models. For each model’s estimate of each coefficient,
the figure plots the value of �̂ j k and the usual 95% con-
fidence interval (�̂ j k ± 1.96 times standard error). The

13In each case we standardize each of the nine vectors of residu-
als to have variance equal to 1.0 before computing the principal
component.
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FIGURE 1 Five Models for 2000 Election Vote Counts, Florida
Counties

Note: Each plot shows the point estimate and 95% confidence interval for the indicated coefficient
using each estimator. Where shown, the vertical line marks the value zero. n = 67 counties.

nonrobust ML estimator’s standard errors take overdis-
persion into account.14 The nonrobust ML, AL, SUR, and
heteroskedastic SUR results differ significantly from the

14Other model parameters: Nonrobust ML: �̂ = 8.47. AL: DF =
10.5, �̂2

11 = 0.177, �̂2
22 = 0.156, �̂2

33 = 0.110, �̂2
44 = 0.099, �̂2

21 =
0.061, �̂2

31 = 0.090, �̂2
32 = 0.103, �̂2

41 = 0.085, �̂2
42 = 0.099, �̂2

43 =
0.102. SUR: �̂2

11 = 0.249, �̂2
22 = 0.174, �̂2

33 = 0.131, �̂2
44 = 0.116,

�̂2
21 = 0.053, �̂2

31 = 0.109, �̂2
32 = 0.114, �̂2

41 = 0.104, �̂2
42 = 0.100,

tanh results for several coefficients. For instance, all four
estimators produce insignificant estimates for the effects
of change in Democratic party registration on votes for
Gore, and all four significantly underestimate the effect of
Green party registration on votes for Nader. The estimate

�̂2
43 = 0.119. Heteroskedastic SUR: �̂2

11 = 0.251, �̂2
22 = 0.170,

�̂2
33 = 0.126, �̂2

44 = 0.116, �̂2
21 = 0.055, �̂2

31 = 0.112, �̂2
32 = 0.113,

�̂2
41 = 0.105, �̂2

42 = 0.108, �̂2
43 = 0.118.
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TABLE 6 Outlier Florida Counties in the 2000 Election

Candidate

County Buchanan Nader Gore Bush Other Total

Alachua 0.57 −11.84 3.02 3.61 6.09 85,729
Broward 0.20 −0.16 −5.47 5.59 0.11 575,143
Duval −1.57 −4.64 −4.51 5.54 2.26 264,636
Escambia 0.13 −2.67 5.30 −4.43 0.11 116,648
Leon −0.48 −7.63 6.94 −4.06 0.99 103,124
Marion 1.33 0.81 3.76 −4.57 3.82 102,956
Martin −0.54 −0.01 4.28 −4.06 −0.91 62,013
Orange −0.26 −4.97 2.75 −1.31 0.16 280,125
Palm Beach 22.79 −1.68 −1.16 −0.48 0.91 433,186
Pasco 1.09 4.00 −7.20 5.99 0.50 142,731
Pinellas 1.48 0.29 −9.54 9.07 3.26 398,472
Santa Rosa −1.03 −0.29 4.14 −4.13 0.37 50,319

Note: Entries are studentized residuals of the form r̃i1, each computed by permuting the categories
to place each candidate in the first position. The last column reports mi .

of the effect of changes in Democratic party registration
is important not only because of the reported pattern of
Cuban-Americans dropping their Democratic registra-
tions in Miami-Dade county, but also because of the mo-
bilization drive Gore launched in 2000 throughout Florida
that brought many voters into the electoral system for the
first time. The tanh estimate is the only one that sup-
ports concluding that these patterns of disenchantment
and mobilization had a significant effect on the Gore vote.

The models convey significantly different impres-
sions about how Cuban-Americans voted. The tanh es-
timator is the only one to produce a significant effect
for Cubani on votes for Buchanan. Buchanan’s anti-
immigrant reputation makes the tanh estimate more
plausible than the others. And the tanh estimator is the
only one to support an inference that Cuban-Americans
were significantly more likely to vote for Bush than for
Gore (i.e., an inference that �33 �= �43). The insignifi-
cant estimated differences are dubious in light of Cuban-
Americans’ pro-Republican bias and the particular hos-
tility toward Gore sparked by the González affair.

The nonrobust ML estimator and the SUR model
feature one estimate that appears to be significant but
with the opposite sign from the tanh estimate: the effect
of the principal component on votes for Bush. The AL and
heteroskedastic SUR models also estimate a negative value
for this parameter, but the estimates those models produce
do not appear to be statistically significant and indeed
fall within the tanh estimator’s 95% confidence interval.
The nonrobust ML estimates also have a significant sign
reversal for the effect of the principal component on votes

for Gore. Even though effects associated with the principal
components are not readily interpretable, these results
demonstrate that the pattern of sign reversals illustrated
in the sampling experiment can occur in practice with real
data.

Table 6 lists all the counties that contain a studentized
residual of magnitude greater than 4.0, which typically
implies that the corresponding count receives a weight of
zero in the analysis.15 To facilitate the presentation each
studentized residual is computed after permuting the cat-
egories to place the referent candidate in the first position,
i.e., in Table 6 all the residuals displayed for each county
are in the form r̃i1 (defined in Equation (A3)). These
residuals have the virtue of being readily associated with
the candidates.

The residuals reveal that to diagnose the effect Palm
Beach County’s butterfly ballot had on would-be Gore
voters, it is important to focus on the vote for Buchanan. In
Palm Beach County the value (22.79) is large for Buchanan
while the value for Gore is negative but not large. The
number of votes that went to Buchanan by mistake be-
cause of the butterfly ballot is a very high proportion
of the total number Buchanan received in Palm Beach
County. According to Wand et al. (2001), somewhere be-
tween 2,000 and 3,000 of Buchanan’s 3,411 votes were

15A studentized residual of magnitude greater than 4.0 need not
imply that wij = 0 for the j that indexes that count because the
residuals in Table 6 have each category permuted to be in the first
position, and to fully studentize each residual the residual is divided
by the “hat matrix” element (1 − hij)1/2 (see Equation (A3) for
details).
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mistaken would-be Gore votes. But the number is a tiny
fraction of Gore’s vote total (269,732) there.

The 1993 Polish
Parliamentary Election

For the second example we use the tanh estimator to reesti-
mate Jackson’s (2002) model for votes in the 1993 election
for the lower House of the Polish parliament.16 For sev-
eral important parameters, the tanh estimator produces
sharper inferences than the heteroskedastic SUR model
that Jackson (2002) used to analyze the same data.

We estimate the form specified for the model and
estimated by Jackson (2002). Votes are aggregated to
the level of the Polish province, or voivodship, produc-
ing 49 voivodship observations. The total number of
votes cast in each voivodship (mi) ranges from 83,840
to 1,323,540. The analysis focuses on the votes cast for
six party groupings: the Democratic Union plus Liberal
Democratic Congress (UD+KLD); the Democratic Left
Alliance (SLD); the Polish Peasants’ Party (PSL); the
Union of Work (UP); a coalition of Catholic parties; and
all other parties (Other). Jackson (2002) and Jackson,
Klich, and Poznańska (2003) define and motivate the re-
gressors used in the analysis: the proportion of jobs in new
and small private firms; the unemployment rate; the pro-
portion of jobs in state-managed firms; the proportion of
people attending church; mean years of schooling; mean
age; the proportion of the population who are farmers;
the proportion of the population living in villages. The
UD+KLD is treated as the reference party, so that except
for a dummy variable that indicates the home voivodship
of the UD party leader, Hanna Suchocka, all coefficients
are zero in this party’s linear predictor. Otherwise all the
regressors appear in the linear predictors for the other five
parties, except that the farmers and villages variables ap-
pear only in the linear predictor for PSL. Finally in each
of the linear predictors for SLD, PSL, and UP there is a
dummy variable to indicate the home of the respective
party leaders.

We compare the tanh estimates to the estimates ob-
tained using Jackson’s (2002) heteroskedastic SUR model.
All offects that are statistically significant with the het-
eroskedastic SUR model (see Jackson 2002 Table 1) are
also statistically significant with the tanh estimator. But
reflecting the sampling experiment result that the het-
eroskedastic SUR model frequently produces excessively

16Jackson (2002) compares the SUR and heteroskedastic SUR
models.

wide confidence intervals, the tanh model estimates a
few effects to be significant that the heteroskedastic SUR
model does not.

Some of these differences are substantively impor-
tant. In Jackson (2002, Table 1) the constant is estimated
to be large but insignificant for the SLD and the PSL,
two postcommunist parties (Jackson et al. 2003, 91–92).
In Table 7, which reports the tanh results, the estimated
constant is significant for the SLD, but it is much smaller
in magnitude and not significant for the PSL. Notwith-
standing their statistical insignificance, Jackson interprets
the constants he estimates for the SLD and the PSL as
“reflecting broad dissatisfaction with the consequences of
the harsh economic reforms” (Jackson 2002, 55). The tanh
estimates suggest that while such an interpretation may
hold for the SLD, for the PSL vote support was more purely
contingent on voivodship-level factors. Another impor-
tant difference from the heteroskedastic SUR results is the
effect jobs in state-managed firms are estimated to have on
votes cast for the UP and for the Other parties. The tanh
estimates are significantly positive, but the same effects
are not significant in Jackson (2002, Table 1). These re-
sults do not challenge Jackson’s conclusion that support
for the two post-communist parties, SLD and PSL, did
not depend on employment in state-managed enterprises
(Jackson 2002, 55), but the tanh estimates suggest it would
be wrong to conclude that employment in state-managed
firms had no significant effect on the election at all. That
the UP’s support in part depends on such employment
resonates with what Jackson et al. (2003, 92) describe as
the UP’s opposition to privatization.

The sampling experiment shows that the het-
eroskedastic SUR model usually produces reasonably
good coverage results when the model is correct and there
is overdispersion. The tanh estimate of �̂tanh = 36.2 indi-
cates a large amount of overdispersion—much larger than
the value of �̂tanh = 4.4 estimated among Florida’s coun-
ties in 2000. So the differences between the tanh and het-
eroskedastic SUR results must trace either to there being
significantly different electoral processes in some voivod-
ships or to some other kind of model misspecification.
In the Polish data there are no outliers, meaning that the
tanh estimator does not completely reject any observation
by giving it a weight (wij ) of zero. But one observation
comes close to that status. The studentized residuals r̃i1,
computed as in Table 6 with each party successively placed
in the first position to facilitate interpretation, show a
value of r̃i1 = 3.91 for the Catholic parties in Bialystok
Voivodship. The next largest value is r̃i1 = 3.24 for the
SLD in Bydgoszcz Voivodship. Given the ordering of the
categories—the SLD is the first party and the Catholic
parties are ordered fourth—the weights associated with
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TABLE 7 Overdispersed Multinomial Model for 1993 Polish Parliamentary Elections

SLD PSL UP

Coeff. SE Coeff. SE Coeff. SE

Constant 5.87 2.08 2.08 3.66 1.72 2.32
Jobs in New Firms −6.46 2.28 −7.81 3.13 −3.67 1.54
Unemployment 0.433 0.865 0.808 1.31 0.829 0.796
Jobs in State-enterprises 0.422 0.340 0.470 0.410 0.722 0.238
Church Attendance −2.09 0.403 −1.54 0.525 −1.78 0.412
Years of Schooling −0.390 0.092 −0.353 0.112 −0.275 0.074
Age/10 0.037 0.353 0.368 0.645 0.352 0.369
Farmers – – 1.99 0.900 – –
Village – – 2.13 0.769 – –
Party Leader 0.535 0.042 0.947 0.071 0.908 0.075

Catholic Other UD + KLD

Coeff. SE Coeff. SE Coeff. SE

Constant −6.71 3.96 2.84 2.02 – –
Jobs in New Firms −3.22 2.64 −5.31 1.72 – –
Unemployment 2.09 1.34 0.638 0.957 – –
Jobs in State-enterprises 0.476 0.529 0.848 0.313 – –
Church Attendance 2.49 0.583 0.183 0.406 – –
Years of Schooling −0.332 0.155 −0.398 0.086 – –
Age/10 1.716 0.614 0.501 0.320 – –
Party Leader – – – – 0.545 0.086

Note: n = 49 voivodships. Entries are tanh estimates and sandwich standard errors. Dispersion estimates:
�̂LQD = 41.6; �̂tanh = 36.2.

these residuals are wi4 = 0.30 for the Bialystok observa-
tion and wi1 = 0.55 for the Bydgoszcz observation. The
remaining studentized residuals are all smaller than 3.0.

Nonrobust Estimation
Declared Harmful

Nonrobust estimation is very likely to produce misleading
results, often grossly misleading results such as seemingly
significant coefficient estimates that have the wrong sign.
Until recently the amount of computing required to cal-
culate a good robust estimator was perhaps prohibitive,
but nowadays the availability of cheap and plentiful com-
puting power makes it feasible to apply robust estimation
to a wide range of interesting models and data. Robust
estimators with good properties have been available since
at least the early 1980s for linear and generalized lin-
ear regression models (e.g., Huber 1981; Hampel et al.
1986; Stefanski, Carrol, and Ruppert 1986). Robust esti-
mation software is available for a wide variety of models

and data. Many statistical packages include redescend-
ing M-estimators for the linear model, including R, SAS,
S-Plus, and STATA. S-Plus offers the most comprehensive
robust estimation software library, including routines for
time-series data (Martin 1981), individual-level logistic
regression (Carroll and Pederson 1993), Poisson regres-
sion (Künsch, Stefanski, and Carroll 1989) and covariance
matrices (Rousseeuw and van Driessen 1999). Software
for our estimator is available from the authors.

The estimator we have introduced in this article ex-
tends robust estimation technology effectively to models
for count data. The results of the sampling experiment il-
lustrate how erroneous and misleading the results of non-
robust estimation can be. If the regressors associated with
them have high leverage, a small proportion of contami-
nated observations can cause coefficients to be estimated
with apparent statistical significance but the wrong sign.
Sign reversal due to such high leverage observations is a
well known phenomenon in ordinary linear regression
models (e.g., Rousseeuw and Leroy 1987, 5). In such cases
the residuals from a nonrobust estimation will often not
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be large for the contaminated observations, so that the
reason for the grossly wrong results—and even the fact
that the results are wrong—may be masked (e.g., Atkinson
1986). If for no other reason, robust estimation should be
used to provide insurance against the seriously mislead-
ing conclusions such grossly wrong estimates may appear
to support. Even when results as bad as significant sign
reversals do not occur, contamination will usually make
nonrobust estimates inaccurate or otherwise distort es-
timates of sampling error variances, leading to incorrect
inferences.

The robust estimation method we have introduced
provides accurate parameter estimates and is a powerful
technology for detecting irregular outcomes. Accurate pa-
rameter estimates can be produced, of course, only when
the processes that generated most of the data are well
approximated by the specified model. In some cases, out-
liers the estimator detects may be helpful in diagnosing
problems with the model such as erroneously omitted
variables. For instance, in the Florida data, estimating a
model that omits the Cuban-American variable results in
very large studentized residuals for Miami-Dade County,
even larger than the residual found for Buchanan’s vote in
Palm Beach County.17 As we previously observed, with the
Cuban-American variable included, no outliers occur for
Miami-Dade County. There may be many plausible ex-
planations for an observed anomaly. Robust estimation
and outlier detection are inherently part of a strategy of
triangulation. Such an approach calls for mobilizing dif-
ferent kinds of knowledge, data and analysis and doing
many different kinds of comparisons, often at different
levels of observation and analysis. Wand et al. (2001) did
that for the vote for Buchanan in Palm Beach County.

The tanh estimator is not the only approach to robust
estimation with count data. For instance, the estimator
developed by Victoria-Feser and Ronchetti (1997) could
possibly be augmented to allow for overdispersion. The
estimator proposed by Christmann (1994), using the least
median of squares (LMS), could likewise be modified for
overdispersion, although the low efficiency of LMS would
be a limitation.

More work is needed to verify the estimator’s per-
formance with smaller sample sizes and with more com-
plicated forms of contamination than we have examined
here. Nonetheless we have great confidence that robust
estimation using the tanh estimator is vastly superior to
nonrobust estimation. Nonrobust estimation should be
avoided whenever possible.

17In that model the studentized residual is r̃i1 = −28.4 for Gore in
Miami-Dade and r̃i1 = 31.3 for Bush. For Buchanan in Palm Beach
County in that model, r̃i1 = 20.8.

Appendix
Robust Estimation Method Details

To orthogonalize the residuals we use the formal Cholesky
decomposition of the multinomial covariance matrix that
was derived by Tanabe and Sagae (1992). The multino-
mial covariance matrix, mi(P i − pip′

i ), has rank J − 1.
Tanabe and Sagae (1992) show that the matrix has a for-
mal decomposition, mi(P i − pip′

i ) = miLiDiL′
i, where

L i is a lower triangular matrix (Tanabe and Sagae 1992,
213, eq. 8), and Di is a diagonal matrix with diagonal
elements dij , with diJ = 0 (Tanabe and Sagae 1992, 213,
eq. 9). Both L i and Di are functions of the probabilities
pi. The covariance matrix may be diagonalized using the
inverse of L i, denoted L−1

i (Tanabe and Sagae 1992, 213,
eq. 10): miL

−1
i (P i − pip′

i ) L ′
i
−1 = miDi. The diagonaliza-

tion implies that if the probabilities were known, the resid-
uals could be orthogonalized by multiplying the residual
vector by L−1

i , i.e., r ⊥
i = L−1

i (yi − mipi), because

E
[
r ⊥

i

(
r ⊥

i

)′] = L−1
i E [(yi − mi pi )(yi − mi pi )

′]L ′
i
−1

.

Because the entries in the last row of L−1
i all equal 1, the

last (i.e., J-th) element of r ⊥
i is always zero. Hence the

orthogonalized residuals r ⊥
ij , j = 1, . . . , J − 1, contain all

the residual information.
We use the estimated probabilities p̂ij =

exp(�̂ij)/
∑J

k=1 exp(�̂ik), where �̂ij = x ′
ij�̂ j is the esti-

mated linear predictor, to compute estimated inverse
Cholesky factor matrices, L̂−1

i , and hence orthogo-
nalized residuals r̂ ⊥

i = L̂−1
i r̂i , where r̂i = yi − mi p̂i .

We also use p̂ij to compute estimated Cholesky factors
d̂ ij , which we use to normalize the J − 1 nontrivial
values of r̂ ⊥

i for each i. The resulting residuals are r̂ ∗
ij =

r̂ ⊥
ij (mi d̂ij)−1/2, j = 1, . . . , J − 1 (note that r̂ ⊥

i J = 0).

Expansion of r̂ ⊥
ij and d̂ ij gives the formula:

r̂ ∗
ij =




r̂i1√
mi p̂i1(1− p̂i1)

, j = 1

r̂ ij +
(∑ j−1

k=1 r̂ik

)
p̂ij

/[
1 −

(∑ j−1
k=1 p̂ik

)]
√

mi p̂ij

[
1 −

(∑ j
k=1 p̂ik

)]/[
1 −

(∑ j−1
k=1 p̂ik

)] , 1 < j ≤ J − 1.

If the overdispersed multinomial model is correctly spec-
ified, then given a consistent estimate for �, a good mo-
ment estimator for �2 may be defined in terms of the
r̂ ∗

ij values (compare McCullagh and Nelder 1989, 168–
69). Moreover, if the values mipij(1 − pij) are sufficiently
large, then the residuals r̂ ∗

ij , j = 1, . . . , J − 1, are approx-

imately normal.18

18The discussion in Wand et al. (2001, 806–07) of the relationship
between mipij(1 − pij) and the residuals’ approximate normality in
binomial models also applies if J > 2.
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Let the n(J − 1) residuals r̂ ∗
ij , i = 1, . . . , n, j =

1, . . . , J − 1, be indexed by 
 = 1, . . . , n(J − 1). With
K being the number of unknown coefficient parame-
ters in the model, define hK = � n(J −1)+K

2 �. We define the

LQD estimator in terms of the
(hK

2

)
order statistic of the

set {|r̂ ∗

1

− r̂ ∗

2
| : 
1 < 
2} of

(n(J −1)
2

)
absolute differences

(Croux et al. 1994):

Q∗
n(J −1) = {∣∣r̂ ∗


1
− r̂ ∗


2

∣∣ : 
1 < 
2

}
(hK

2 ):(n(J −1)
2 ).

The coefficient estimates �̂LQD minimize Q∗
n(J −1). Let

Q̂∗
n(J −1) designate the corresponding minimized value of

Q∗
n(J −1). The LQD scale estimate is

�̂LQD = Q̂∗
n(J −1)

1√
2�−1(5/8)

,

where �−1 is the quantile function for the standard nor-
mal distribution (Rousseeuw and Croux 1993, 1277). The
approximate normality of the residuals r̂ ∗


 in the case of
correct specification justifies the factor 1/[

√
2�−1(5/8)].

We use GENOUD (Sekhon and Mebane 1998) to mini-
mize Q∗

n(J −1) because Q∗
n(J −1) is not differentiable for all

values of � and is not globally concave.19

The tanh estimator for � is a redescending M-
estimator (Huber 1981, 100–03; Hampel et al. 1986,
149–52) based on the function:

� (u) =




u, for 0 ≤ |u| ≤ p

(A(d − 1))1/2 tanh
[

1
2 ((d − 1)B2

/
A)1/2

× (c − |u|)]sign(u), for p ≤ |u| ≤ c

0, for c ≤ |u|
where choices of c and d imply values for p, A, and B.20

The value of c is the truncation threshold, and d is the
ratio between the change-of-variance function—the sen-
sitivity of the estimator’s asymptotic variance to a change
in the data—and the asymptotic variance. The tanh esti-
mator minimizes the asymptotic variance subject to that
ratio.21 Given scale estimate �̂LQD and trial estimates �̂,
we compute for each i the J − 1 weights

wij =



� (r̂ ∗
ij /�̂LQD)

r̂ ∗
ij /�̂LQD

, for r̂ ∗
ij �= 0

1, for r̂ ∗
ij = 0.

19We use the R package rgenoud (version 1.20), available from
CRAN.

20We use c = 4.0 and d = 5.0 which imply values p = 1.8, A =
0.86, and B = 0.91 as given in Table 2 in Hampel et al. (1981,
645). Hampel et al. (1981) use k for the ratio we have denoted by d.
Alternatively see Table 2 of (Hampel et al. 1986, 163) where notation
r and k is used for the parameters we have denoted by c and d.

21For details see Hampel et al. (1981, 645) or Hampel et al. (1986,
160–65).

A normalized residual that has wij = 0 (i.e., |r̂ ∗
ij /�̂LQD| ≥

c) is an outlier.
To estimate � we use wi and L̂ i to weight the gradient

and the Hessian in a Newton algorithm (Gill, Murray,
and Wright 1981, 105). The negative log-likelihood for a
multinomial model is l i = −(logpi)′yi, the gradient with
respect to �i is ∂l i/∂�i = − (yi − mipi), and the Hessian
is ∂2l i/∂�i∂�′

i = mi(P i − pip′
i ). The chain rule gives

the gradient (∂�′
i/∂�)(∂l i/∂�i ) and Hessian (∂�′

i/∂�)×
(∂2l i/∂�i∂�′

i ) (∂�i/∂�′) with respect to �. Let W i denote
the J × J diagonal matrix that has Wi, j j = wij for the
diagonal values j = 1, . . . , J − 1 and Wi,JJ = 1. The
weighted gradient with respect to �, evaluated at �̂, is

ŝ i = −∂�̂′
i

∂�̂
L̂ i Wi L̂−1

i (yi − mi p̂i ).

For the Hessian, we weight the components of the es-
timated Cholesky factor matrix D̂i which has diagonal
values d̂ ij . Evaluated at �̂, the weighted Hessian for the
Newton algorithm is

G∗
i = mi

∂�̂′
i

∂�̂
L̂ i Wi D̂i Wi L̂ ′

i

∂�̂i

∂�̂′ .

Each iteration of the Newton algorithm uses steps pro-
portional to

b = −
(

n∑
i=1

G∗
i

)−1 (
�̂−1

LQD

n∑
i=1

ŝ i

)
.

We alternate rounds of LQD and tanh estimation
(compare Huber 1981, 179–92). Each tanh round is a
series of Newton optimizations that uses the preceding
estimates �̂LQD to start the coefficients and the preceding
LQD values (r̂ ∗


 − med
r̂ ∗

 )/�̂LQD for an initial set of resid-

uals, where med
r̂ ∗

 denotes the median of the r̂ ∗


 values,

 = 1, . . . , n(J − 1).

To estimate the asymptotic covariance matrix of the
tanh coefficient estimates, ��̂, we use Huber’s (1967, 231;
1981, 133) sandwich estimator. Let s i = −(∂�′

i/∂�) ×
LiW iL

−1
i (yi − mipi) denote the weighted gradient for �

known. Note that

si/∂�′ = (∂si/∂�′
i )(∂�i/∂�′)

= ∂�′
i

∂�

[
mi L i Wi L−1

i L i Di L ′
i

+ ∂
(
L i Wi L−1

i

)
∂�′

i

(yi − mi p̂i )

]
∂�i

∂�′

= mi (∂�′
i/∂�)L i Wi Di L ′

i (∂�i/∂�′) + zi

where zi = 0 if W i is the identity matrix (no component of
observation i is downweighted) and otherwise zi is small.
Hence using the weighted Hessian,
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Ĝ =
n∑

i=1

mi
∂�̂′

i

∂�̂
L̂ i Wi D̂i L̂ ′

i

∂�̂i

∂�̂′ , (A1)

and the outer product of the weighted gradient, Î =∑n
i=1 ŝ i ŝ ′

i , the sandwich estimator is �̂�̂ = Ĝ−1 Î Ĝ−1 (see
also White 1994, 92).22 We also consider two other covari-
ance matrix estimators. One is �̂G:�̂ = �̂2

tanhĜ−1, where,

with �̂ used to compute r̂ ∗
ij ,

�̂2
tanh =

∑n
i=1

∑J −1
j=1

(
r̂ ∗

ij

)2
wij(∑n

i=1

∑J −1
j=1 wij

)
− K

.

The other covariance matrix estimator we consider is
�̂I:�̂ = Î −1.

To obtain studentized residuals (Carroll and Ruppert
1988, 31) for outlier diagnostics, we make a weighting ad-
justment for leverage (which applies to normalized resid-
uals with wij > 0) or for forecasting error (which applies
to the residuals with wij = 0). Let V i denote the J × J di-
agonal matrix that has diagonal values V i, j j = (midij)−1/2,
for j =1, . . . , J −1, and V i,JJ =0. The first J −1 diagonal
values of

Hi = Vi L̂ ′
i

∂�̂i

∂�̂′

(
n∑

i=1

∂�̂′
i

∂�̂
L̂ i Vi Wi Vi L̂ ′

i

∂�̂i

∂�̂′

)−1

× ∂�̂′
i

∂�̂
L̂ i Vi (A2)

provide robust estimates of the additional weights (com-
pare McCullagh and Nelder 1989, 397; Carroll and
Ruppert 1988, 31–34).23 For j = 1, . . . , J − 1, let hij =
Hi, j j if wij > 0 and hij = −Hi, j j if wij = 0 (note that
Hi,JJ = 0). The studentized residuals are:

r̃ ij = r̂ ∗
ij

/ (
�̂LQD

√
1 − hij

)
, j = 1, . . . , J − 1. (A3)

For J = 2, r̃i1 is the same as the residual r̃i of Wand et al.
(2001, 806).
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